Preface |
|
xi | |
1 What Is OODA? |
|
1 | (18) |
|
1.1 Case Study: Curves as Data Objects |
|
|
3 | (7) |
|
1.2 Case Study: Shapes as Data Objects |
|
|
10 | (9) |
|
1.2.1 The Segmentation Challenge |
|
|
10 | (2) |
|
1.2.2 General Shape Representations |
|
|
12 | (1) |
|
1.2.3 Skeletal Shape Representations |
|
|
13 | (2) |
|
1.2.4 Bayes Segmentation via Principal Geodesic Analysis |
|
|
15 | (4) |
2 Breadth of OODA |
|
19 | (12) |
|
2.1 Amplitude and Phase Data Objects |
|
|
19 | (4) |
|
2.2 Tree-Structured Data Objects |
|
|
23 | (2) |
|
2.3 Sounds as Data Objects |
|
|
25 | (3) |
|
2.4 Images as Data Objects |
|
|
28 | (3) |
3 Data Object Definition |
|
31 | (16) |
|
|
31 | (8) |
|
|
31 | (1) |
|
3.1.2 Object and Feature Space Example |
|
|
32 | (4) |
|
|
36 | (2) |
|
3.1.4 Formalization of Modes of Variation |
|
|
38 | (1) |
|
3.2 Mathematical Notation |
|
|
39 | (1) |
|
3.3 Overview of Object and Feature Spaces |
|
|
40 | (7) |
|
3.3.1 Example: Probability Distributions as Data Objects |
|
|
43 | (4) |
4 Exploratory and Confirmatory Analyses |
|
47 | (24) |
|
4.1 Exploratory Analysis-Discover Structure in Data |
|
|
47 | (16) |
|
4.1.1 Example: Tilted Parabolas FDA |
|
|
48 | (4) |
|
4.1.2 Example: Twin Arches FDA |
|
|
52 | (3) |
|
4.1.3 Case Study: Lung Cancer Data |
|
|
55 | (5) |
|
4.1.4 Case Study: Pan-Cancer Data |
|
|
60 | (3) |
|
4.2 Confirmatory Analysis-Is It Really There? |
|
|
63 | (6) |
|
4.3 Further Major Statistical Tasks |
|
|
69 | (2) |
5 OODA Preprocessing |
|
71 | (26) |
|
5.1 Visualization of Marginal Distributions |
|
|
71 | (14) |
|
5.1.1 Case Study: Spanish Mortality Data |
|
|
72 | (2) |
|
5.1.2 Case Study: Drug Discovery Data |
|
|
74 | (11) |
|
5.2 Standardization-Appropriate Linear Scaling |
|
|
85 | (6) |
|
5.2.1 Example: Two Scale Curve Data |
|
|
86 | (3) |
|
5.2.2 Overview of Standardization |
|
|
89 | (2) |
|
5.3 Transformation-Appropriate Nonlinear Scaling |
|
|
91 | (3) |
|
5.4 Registration-Appropriate Alignment |
|
|
94 | (3) |
6 Data Visualization |
|
97 | (28) |
|
6.1 Heat-Map Views of Data Matrices |
|
|
97 | (7) |
|
6.2 Curve Views of Matrices and Modes of Variation |
|
|
104 | (3) |
|
6.3 Data Centering and Combined Views |
|
|
107 | (9) |
|
6.4 Scatterplot Matrix Views of Scores |
|
|
116 | (4) |
|
6.5 Alternatives to PCA Directions |
|
|
120 | (5) |
7 Distance Based Methods |
|
125 | (22) |
|
7.1 Frechet Centers In Metric Spaces |
|
|
127 | (5) |
|
7.2 Multi-Dimensional Scaling For Object Representation |
|
|
132 | (4) |
|
7.3 Important Distance Examples |
|
|
136 | (11) |
|
|
136 | (1) |
|
7.3.2 Wasserstein Distances |
|
|
137 | (2) |
|
7.3.3 Procrustes Distances |
|
|
139 | (2) |
|
7.3.4 Generalized Procrustes Analysis |
|
|
141 | (2) |
|
7.3.5 Covariance Matrix Distances |
|
|
143 | (4) |
8 Manifold Data Analysis |
|
147 | (28) |
|
|
147 | (2) |
|
8.2 Introduction to Shape Manifolds |
|
|
149 | (2) |
|
8.3 Statistical Analysis of Shapes |
|
|
151 | (6) |
|
|
157 | (10) |
|
8.4.1 Shape Tangent Space |
|
|
160 | (1) |
|
8.4.2 Case Study: Digit 3 Data |
|
|
160 | (2) |
|
8.4.3 Case Study: DNA Molecule Data |
|
|
162 | (2) |
|
8.4.4 Principal Nested Shape Spaces |
|
|
164 | (2) |
|
8.4.5 Size-and-shape space |
|
|
166 | (1) |
|
8.4.6 Further Methodology |
|
|
167 | (1) |
|
8.5 Central Limit Theory on Manifolds |
|
|
167 | (2) |
|
|
169 | (3) |
|
8.7 Covariance Matrices as Data Objects |
|
|
172 | (3) |
9 FDA Curve Registration |
|
175 | (22) |
|
9.1 Fisher-Rao Curve Registration |
|
|
176 | (17) |
|
9.1.1 Example: Shifted Betas Data |
|
|
176 | (5) |
|
9.1.2 Introduction to Warping Functions |
|
|
181 | (1) |
|
9.1.3 Fisher-Rao Mathematics |
|
|
182 | (11) |
|
9.2 Principal Nested Spheres Decomposition |
|
|
193 | (4) |
10 Graph Structured Data Objects |
|
197 | (18) |
|
10.1 Arterial Trees as Data Objects |
|
|
198 | (9) |
|
10.1.1 Combinatoric Approaches |
|
|
198 | (1) |
|
|
199 | (3) |
|
|
202 | (1) |
|
10.1.4 Persistent Homology |
|
|
203 | (3) |
|
10.1.5 Comparison of Tree Analysis Methods |
|
|
206 | (1) |
|
10.2 Networks as Data Objects |
|
|
207 | (8) |
|
|
207 | (2) |
|
10.2.2 Example: A Tale of Two Cities |
|
|
209 | (2) |
|
10.2.3 Extrinsic and Intrinsic Analysis |
|
|
211 | (1) |
|
10.2.4 Case Study: Corpus Linguistics |
|
|
211 | (2) |
|
10.2.5 Labeled versus Unlabeled Nodes |
|
|
213 | (2) |
11 Classification-Supervised Learning |
|
215 | (28) |
|
|
217 | (9) |
|
|
226 | (6) |
|
11.3 Support Vector Machines |
|
|
232 | (4) |
|
11.4 Distance Weighted Discrimination |
|
|
236 | (5) |
|
11.5 Other Classification Approaches |
|
|
241 | (2) |
12 Clustering-Unsupervised Learning |
|
243 | (14) |
|
|
243 | (4) |
|
12.2 Hierarchical Clustering |
|
|
247 | (7) |
|
12.3 Visualization Based Methods |
|
|
254 | (3) |
|
12.3.1 Hybrid Clustering Methods |
|
|
256 | (1) |
13 High-Dimensional Inference |
|
257 | (18) |
|
13.1 DiProPerm-Two Sample Testing |
|
|
257 | (5) |
|
13.2 Statistical Significance in Clustering |
|
|
262 | (13) |
|
13.2.1 High Dimensional SigClust |
|
|
266 | (9) |
14 High Dimensional Asymptotics |
|
275 | (18) |
|
14.1 Random Matrix Theory |
|
|
276 | (5) |
|
14.2 High Dimension Low Sample Size |
|
|
281 | (9) |
|
14.3 High Dimension Medium Sample Size |
|
|
290 | (3) |
15 Smoothing and SiZer |
|
293 | (20) |
|
15.1 Why Not Histograms?-Hidalgo Stamps Data |
|
|
294 | (5) |
|
15.2 Smoothing Basics-Bralower Fossils Data |
|
|
299 | (3) |
|
15.3 Smoothing Parameter Selection |
|
|
302 | (1) |
|
15.4 Statistical Inference and SiZer |
|
|
303 | (10) |
|
15.4.1 Case Study: British Family Incomes Data |
|
|
304 | (3) |
|
15.4.2 Case Study: Bralower Fossils Data |
|
|
307 | (1) |
|
15.4.3 Case Study: Mass Flux Data |
|
|
307 | (1) |
|
15.4.4 Case Study: Kidney Cancer Data |
|
|
308 | (3) |
|
15.4.5 Additional SiZer Applications and Variants |
|
|
311 | (2) |
16 Robust Methods |
|
313 | (18) |
|
16.1 Robustness Controversies |
|
|
314 | (1) |
|
16.2 Robust Methods for OODA |
|
|
315 | (12) |
|
16.2.1 Case Study: Cornea Curvature Data |
|
|
321 | (4) |
|
16.2.2 Case Study: Genome-Wide Association Data |
|
|
325 | (2) |
|
16.3 Other Robustness Areas |
|
|
327 | (4) |
17 PCA Details and Variants |
|
331 | (30) |
|
|
332 | (18) |
|
|
334 | (8) |
|
17.1.2 Singular Value Decomposition |
|
|
342 | (6) |
|
17.1.3 Gaussian Likelihood View |
|
|
348 | (1) |
|
17.1.4 PCA Computational Issues |
|
|
349 | (1) |
|
17.2 Two Block Decompositions |
|
|
350 | (11) |
|
17.2.1 Partial Least Squares |
|
|
351 | (3) |
|
17.2.2 Canonical Correlations |
|
|
354 | (5) |
|
17.2.3 Joint and Individual Variation Explained |
|
|
359 | (2) |
18 OODA Context and Related Areas |
|
361 | (10) |
|
18.1 History and Terminology |
|
|
361 | (1) |
|
18.2 OODA Analogy with Object-Oriented Programming |
|
|
362 | (2) |
|
18.3 Compositional Data Analysis |
|
|
364 | (1) |
|
18.4 Symbolic Data Analysis |
|
|
365 | (2) |
|
18.5 Other Research Areas |
|
|
367 | (4) |
Bibliography |
|
371 | (45) |
Index |
|
416 | |