About the Author |
|
xi | |
Preface |
|
xiii | |
Series Editor's Foreword to the Second Edition |
|
xv | |
|
|
1 | (6) |
|
|
5 | (2) |
|
|
7 | (54) |
|
|
7 | (5) |
|
2.1.1 History of OLED Research and Development |
|
|
7 | (1) |
|
2.1.2 Luminescent Effects in Nature |
|
|
8 | (3) |
|
2.1.3 Difference Between OLED, LED, and Inorganic ELs |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
2.2 Basic Device Structure |
|
|
12 | (2) |
|
2.3 Basic Light Emission Mechanism |
|
|
14 | (22) |
|
2.3.1 Potential Energy of Molecules |
|
|
14 | (1) |
|
2.3.2 Highest Occupied and Lowest Unoccupied Molecular Orbitals (HOMO and LUMO) |
|
|
15 | (2) |
|
2.3.3 Configuration of Two Electrons |
|
|
17 | (3) |
|
|
20 | (1) |
|
2.3.5 Singlet and Triplet Excitons |
|
|
20 | (4) |
|
2.3.6 Charge Injection from Electrodes |
|
|
24 | (1) |
|
2.3.6.1 Charge Injection by Schottky Thermionic Emission |
|
|
25 | (3) |
|
2.3.6.2 Tunneling Injection |
|
|
28 | (1) |
|
2.3.6.3 Vacuum-Level Shift |
|
|
28 | (1) |
|
2.3.7 Charge Transfer and Recombination |
|
|
29 | (1) |
|
2.3.7.1 Charge Transfer Behavior |
|
|
29 | (1) |
|
2.3.7.2 Space-Charge-Limited Current |
|
|
29 | (3) |
|
2.3.7.3 Poole--Frenkel conduction |
|
|
32 | (1) |
|
23.7.4 Recombination and Generation of Excitons |
|
|
33 | (3) |
|
|
36 | (10) |
|
2.4.1 Internal/External Quantum Efficiency |
|
|
36 | (1) |
|
2.4.2 Energy Conversion and Quenching |
|
|
37 | (1) |
|
2.4.2.1 Internal Conversion |
|
|
37 | (1) |
|
2.4.2.2 Intersystem Crossing |
|
|
37 | (1) |
|
|
38 | (2) |
|
|
40 | (2) |
|
2.4.3 Outcoupling Efficiency of OLED Display |
|
|
42 | (1) |
|
2.4.3.1 Light Output Distribution |
|
|
42 | (1) |
|
2.4.3.2 Snell's Law and Critical Angle |
|
|
43 | (1) |
|
2.4.3.3 Loss Due to Light Extraction |
|
|
44 | (1) |
|
2.4.3.4 Performance Enhancement by Molecular Alignment |
|
|
45 | (1) |
|
2.5 Lifetime and Image Burning |
|
|
46 | (5) |
|
2.5.1 Lifetime Definitions |
|
|
46 | (1) |
|
2.5.2 Degradation Analysis and Design Optimization |
|
|
47 | (3) |
|
2.5.3 Degradation Measurement and Mechanisms |
|
|
50 | (1) |
|
2.5.3.1 Acceleration Factor and Temperature Contribution |
|
|
50 | (1) |
|
2.5.3.2 Degradation Mechanism Variation |
|
|
50 | (1) |
|
2.6 Technologies to Enhance the Device Performance |
|
|
51 | (10) |
|
2.6.1 Thermally Activated Delayed Fluorescence |
|
|
51 | (2) |
|
2.6.2 Other Types of Excited States |
|
|
53 | (1) |
|
2.6.2.1 Excimer and Exciplex |
|
|
53 | (1) |
|
2.6.2.2 Charge-Transfer Complex |
|
|
53 | (1) |
|
2.6.3 Charge Generation Layer |
|
|
54 | (2) |
|
|
56 | (5) |
|
3 OLED Manufacturing Process |
|
|
61 | (38) |
|
|
61 | (7) |
|
3.1.1 Basic Material Properties |
|
|
61 | (1) |
|
3.1.1.1 Hole Injection Material |
|
|
61 | (1) |
|
3.1.1.2 Hole Transportation Material |
|
|
62 | (1) |
|
3.1.1.3 Emission Layer Material |
|
|
62 | (1) |
|
3.1.1.4 Electron Transportation Material and Charge Blocking Material |
|
|
63 | (4) |
|
3.1.2 Purification Process |
|
|
67 | (1) |
|
|
68 | (11) |
|
|
68 | (4) |
|
3.2.2 Evaporation Sources |
|
|
72 | (1) |
|
3.2.2.1 Resistive Heating Method |
|
|
72 | (3) |
|
3.2.2.2 Electron Beam Evaporation |
|
|
75 | (1) |
|
3.2.2.3 Monitoring Thickness Using a Quartz Oscillator |
|
|
76 | (3) |
|
|
79 | (12) |
|
3.3.1 Dark Spot and Edge Growth Defects |
|
|
79 | (1) |
|
3.3.2 Light Emission from the Bottom and Top of the OLED Device |
|
|
80 | (1) |
|
3.3.3 Bottom Emission and perimeter sealing |
|
|
81 | (1) |
|
|
82 | (1) |
|
3.3.5 Encapsulation Technologies and Measurement |
|
|
83 | (1) |
|
3.3.5.1 Thin-Film Encapsulation |
|
|
84 | (3) |
|
3.3.5.2 Face Sealing Encapsulation |
|
|
87 | (1) |
|
3.3.5.3 Frit Encapsulation |
|
|
88 | (1) |
|
|
88 | (3) |
|
|
91 | (8) |
|
3.4.1 Ionization Potential Measurement |
|
|
91 | (1) |
|
3.4.2 Electron Affinity Measurement |
|
|
92 | (1) |
|
|
93 | (1) |
|
|
94 | (2) |
|
|
96 | (3) |
|
|
99 | (44) |
|
4.1 Comparison Between OLED and LCD Modules |
|
|
99 | (2) |
|
4.2 Basic Display Design and Related Characteristics |
|
|
101 | (20) |
|
4.2.1 Luminous Intensity, Luminance, and Illuminance |
|
|
101 | (1) |
|
4.2.1.1 Luminous Intensity |
|
|
101 | (1) |
|
|
102 | (1) |
|
|
103 | (1) |
|
|
104 | (2) |
|
4.2.1.5 Helmholtz--Kohlrausch Effect |
|
|
106 | (1) |
|
4.2.2 OLED Current Efficiencies and Power Efficacies |
|
|
106 | (3) |
|
|
109 | (6) |
|
4.2.4 Uniform Color Space |
|
|
115 | (1) |
|
4.2.5 White Point Determination |
|
|
116 | (3) |
|
|
119 | (1) |
|
|
120 | (1) |
|
4.3 Passive-Matrix OLED Display |
|
|
121 | (4) |
|
|
121 | (1) |
|
|
122 | (3) |
|
4.4 Active-Matrix OLED Display |
|
|
125 | (18) |
|
4.4.1 OLED Module Components |
|
|
125 | (2) |
|
4.4.2 Two-Transistor One-Capacitor (2T1C) Driving Circuit |
|
|
127 | (9) |
|
4.4.3 Ambient Performance |
|
|
136 | (1) |
|
4.4.3.1 Living Room Contrast Ratio |
|
|
136 | (1) |
|
4.4.3.2 Chroma Reduction Due to Ambient Light |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
139 | (4) |
|
5 OLED Color Patterning Technologies |
|
|
143 | (24) |
|
5.1 Color-Patterning Technologies |
|
|
143 | (10) |
|
5.1.1 Shadow Mask Patterning |
|
|
143 | (1) |
|
5.1.1.1 Shadow Mask Process |
|
|
143 | (3) |
|
5.1.1.2 Blue Common Layer |
|
|
146 | (1) |
|
5.1.1.3 Polychromatic Pixel |
|
|
147 | (1) |
|
5.1.2 White + Color Filter Patterning |
|
|
148 | (1) |
|
5.1.3 Color Conversion Medium (CCM) Patterning |
|
|
149 | (1) |
|
5.1.4 Laser-Induced Thermal Imaging (LITI) Method |
|
|
149 | (2) |
|
5.1.5 Radiation-Induced Sublimation Transfer (RIST) Method |
|
|
151 | (1) |
|
5.1.6 Dual-Plate OLED Display (DOD) Method |
|
|
152 | (1) |
|
|
153 | (1) |
|
5.2 Solution-Processed Materials and Technologies |
|
|
153 | (5) |
|
5.3 Next-Generation OLED Manufacturing Tools |
|
|
158 | (9) |
|
5.3.1 Vapor Injection Source Technology (VIST) Deposition |
|
|
158 | (5) |
|
|
163 | (1) |
|
5.3.3 Organic Vapor-Phase Deposition (OVPD) Method |
|
|
164 | (1) |
|
|
165 | (2) |
|
6 TFT and Driving for Active-Matrix Display |
|
|
167 | (48) |
|
|
167 | (2) |
|
|
169 | (8) |
|
6.2.1 Low-Temperature Polysilicon Process Overview |
|
|
169 | (3) |
|
6.2.2 Thin-Film Formation |
|
|
172 | (1) |
|
6.2.3 Patterning Technique |
|
|
173 | (4) |
|
6.2 A Excimer Laser Crystallization |
|
|
177 | (3) |
|
|
180 | (3) |
|
6.4 LTPS-TFT-Driven OLED Display Design |
|
|
183 | (17) |
|
|
183 | (1) |
|
6.4.2 Driver TFT Size Restriction |
|
|
184 | (1) |
|
6.4.3 Restriction Due to Voltage Drop |
|
|
185 | (5) |
|
6.4.4 LTPS-TFT Pixel Compensation Circuit |
|
|
190 | (1) |
|
6.4.4.1 Voltage Programming |
|
|
190 | (2) |
|
6.4.4.2 Current Programming |
|
|
192 | (1) |
|
6.4.4.3 External Compensation Method |
|
|
193 | (1) |
|
|
194 | (3) |
|
6.4.5 Circuit Integration by LTPS-TFT |
|
|
197 | (3) |
|
6.5 TFT Technologies for OLED Displays |
|
|
200 | (15) |
|
6.5.1 Selective Annealing Method |
|
|
200 | (1) |
|
6.5.1.1 Sequential Lateral Solidification (SLS) Method |
|
|
200 | (1) |
|
6.5.1.2 Selective Annealing by Microlens Array |
|
|
200 | (2) |
|
6.5.2 Microcrystalline and Superamorphous Silicon |
|
|
202 | (3) |
|
6.5.3 Solid-Phase Crystallization |
|
|
205 | (1) |
|
6.5.3.1 MIC and MILC Methods |
|
|
205 | (1) |
|
|
205 | (2) |
|
6.5.4 Oxide Semiconductors |
|
|
207 | (3) |
|
|
210 | (5) |
|
7 OLED Television Applications |
|
|
215 | (20) |
|
|
215 | (2) |
|
|
217 | (2) |
|
7.2.1 Relationship between Defect Density and Production Yield |
|
|
217 | (1) |
|
7.2.1.1 Purpose of Yield Simulation |
|
|
217 | (1) |
|
7.2.1.2 Defective Pixel Number Estimation Using the Poisson Equation |
|
|
217 | (1) |
|
7.2.2 Scalable Technology |
|
|
217 | (1) |
|
|
218 | (1) |
|
7.3 Murdoch's Algorithm to Achieve Low Power and Wide Color Gamut |
|
|
219 | (5) |
|
7.3.1 A Method for Achieving Both Low Power and Wide Color Gamut |
|
|
219 | (2) |
|
7.3.2 RGBW Driving Algorithm |
|
|
221 | (3) |
|
7.4 An Approach to Achieve 100% NTSC Color Gamut With Low Power Consumption Using White + Color Filter |
|
|
224 | (11) |
|
7.4.1 Consideration of Performance Difference between W-RGB and W-RGBW Method |
|
|
224 | (1) |
|
7.4.1.1 Issues of White + Color Filter Method for Large Displays |
|
|
224 | (1) |
|
7.4.1.2 Analysis of W-RGBW Approach to Circumvent Its Trade-off Situation |
|
|
224 | (5) |
|
7.4.1.3 Design of a Prototype to Demonstrate That Low Power Consumption Can Be Achieved with Large Color Gamut |
|
|
229 | (1) |
|
7.4.1.4 Product-Level Performance Demonstration by the Combination of Scalable Technologies |
|
|
230 | (3) |
|
|
233 | (2) |
|
|
235 | (20) |
|
8.1 Flexible Display/Wearable Displays |
|
|
235 | (10) |
|
8.1.1 Flexible Display Applications |
|
|
235 | (1) |
|
8.1.2 Flexible Display Substrates |
|
|
235 | (1) |
|
8.1.3 Laser Liftoff Process |
|
|
236 | (4) |
|
8.1.4 Barrier Technology for Flexible Displays |
|
|
240 | (1) |
|
8.1.5 Organic TFTs for Flexible Displays |
|
|
241 | (1) |
|
8.1.5.1 Organic Semiconductor Materials |
|
|
242 | (1) |
|
8.1.5.2 Organic TFT Device Structure and Processing |
|
|
243 | (2) |
|
8.1.5.3 Organic TFT Characteristics |
|
|
245 | (1) |
|
|
245 | (2) |
|
|
247 | (8) |
|
8.3.1 Passive-Matrix Tiling |
|
|
247 | (1) |
|
8.3.2 Active-Matrix Tiling |
|
|
248 | (4) |
|
|
252 | (3) |
|
|
255 | (22) |
|
9.1 Performance Improvement of OLED Lighting |
|
|
255 | (2) |
|
9.2 Color Rendering Index |
|
|
257 | (2) |
|
9.3 OLED Lighting Requirement |
|
|
259 | (3) |
|
9.3.1 Correlated Color Temperature (CCT) |
|
|
260 | (2) |
|
|
262 | (1) |
|
9.4 Light Extraction Enhancement of OLED Lighting |
|
|
262 | (7) |
|
9.4.1 Various Light Absorption Mechanisms |
|
|
262 | (4) |
|
9.4.2 Microlens Array Structure |
|
|
266 | (1) |
|
9.4.3 Diffusion Structure |
|
|
266 | (2) |
|
9.4.4 Diffraction Structure |
|
|
268 | (1) |
|
9.4.5 Reduction of Plasmon Absorption |
|
|
268 | (1) |
|
9.4.5.1 Plasmonic Loss Mechanism |
|
|
268 | (1) |
|
9.5 Color Tunable OLED Lighting |
|
|
269 | (3) |
|
|
272 | (1) |
|
9.6.1 Resistance Reduction |
|
|
272 | (1) |
|
|
272 | (1) |
|
9.7 Roll-to-Roll OLED Lighting Manufacturing |
|
|
273 | (4) |
|
|
275 | (2) |
Appendix |
|
277 | (4) |
Index |
|
281 | |