Muutke küpsiste eelistusi

OLED Display Fundamentals and Applications 2nd edition [Kõva köide]

  • Formaat: Hardback, 320 pages, kõrgus x laius x paksus: 239x160x20 mm, kaal: 658 g
  • Sari: Wiley Series in Display Technology
  • Ilmumisaeg: 09-Jun-2017
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119187311
  • ISBN-13: 9781119187318
  • Formaat: Hardback, 320 pages, kõrgus x laius x paksus: 239x160x20 mm, kaal: 658 g
  • Sari: Wiley Series in Display Technology
  • Ilmumisaeg: 09-Jun-2017
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119187311
  • ISBN-13: 9781119187318
"This book covers the aspects necessary to the design and manufacturing of OLED displays. Topics include emission mechanism, material selection, device processing, manufacturing issues and countermeasures and display design basics. In addition, the book defines elements of OLED such as Thin Film Transistor (TFT) backplane design and processing details, including Low Temperature Poly Silicon (LTPS) process and circuit integration, and high yield method to manufacturer. Researchers and developers are aiming at making large OLED televisions and companies such as Samsung and Apple are rumored to be using OLED display for new screens. In addition to discussing the current composition of OLED, the book also discusses the future for OLED technologies and displays. The new edition examines the most recent information available and also reinforces the content of the previous edition"--

"This book covers the aspects necessary to the design and manufacturing of OLED displays"--

This book covers the aspects necessary to the design and manufacturing of OLED displays. Topics include emission mechanism, material selection, device processing, manufacturing issues and countermeasures and display design basics. In addition, the book defines elements of OLED such as Thin Film Transistor (TFT) backplane design and processing details, including Low Temperature Poly Silicon (LTPS) process and circuit integration, and high yield method to manufacturer. Researchers and developers are aiming at making large OLED televisions and companies such as Samsung and Apple are rumored to be using OLED display for new screens. In addition to discussing the current composition of OLED, the book also discusses the future for OLED technologies and displays.

The new edition examines the most recent information available and also reinforces the content of the previous edition.

About the Author xi
Preface xiii
Series Editor's Foreword to the Second Edition xv
1 Introduction
1(6)
References
5(2)
2 OLED Devices
7(54)
2.1 OLED Definition
7(5)
2.1.1 History of OLED Research and Development
7(1)
2.1.2 Luminescent Effects in Nature
8(3)
2.1.3 Difference Between OLED, LED, and Inorganic ELs
11(1)
2.1.3.1 Inorganic EL
11(1)
2.1.3.2 LED
11(1)
2.2 Basic Device Structure
12(2)
2.3 Basic Light Emission Mechanism
14(22)
2.3.1 Potential Energy of Molecules
14(1)
2.3.2 Highest Occupied and Lowest Unoccupied Molecular Orbitals (HOMO and LUMO)
15(2)
2.3.3 Configuration of Two Electrons
17(3)
2.3.4 Spin Function
20(1)
2.3.5 Singlet and Triplet Excitons
20(4)
2.3.6 Charge Injection from Electrodes
24(1)
2.3.6.1 Charge Injection by Schottky Thermionic Emission
25(3)
2.3.6.2 Tunneling Injection
28(1)
2.3.6.3 Vacuum-Level Shift
28(1)
2.3.7 Charge Transfer and Recombination
29(1)
2.3.7.1 Charge Transfer Behavior
29(1)
2.3.7.2 Space-Charge-Limited Current
29(3)
2.3.7.3 Poole--Frenkel conduction
32(1)
23.7.4 Recombination and Generation of Excitons
33(3)
2.4 Emission Efficiency
36(10)
2.4.1 Internal/External Quantum Efficiency
36(1)
2.4.2 Energy Conversion and Quenching
37(1)
2.4.2.1 Internal Conversion
37(1)
2.4.2.2 Intersystem Crossing
37(1)
2.4.2.3 Doping
38(2)
2.4.2.4 Quenching
40(2)
2.4.3 Outcoupling Efficiency of OLED Display
42(1)
2.4.3.1 Light Output Distribution
42(1)
2.4.3.2 Snell's Law and Critical Angle
43(1)
2.4.3.3 Loss Due to Light Extraction
44(1)
2.4.3.4 Performance Enhancement by Molecular Alignment
45(1)
2.5 Lifetime and Image Burning
46(5)
2.5.1 Lifetime Definitions
46(1)
2.5.2 Degradation Analysis and Design Optimization
47(3)
2.5.3 Degradation Measurement and Mechanisms
50(1)
2.5.3.1 Acceleration Factor and Temperature Contribution
50(1)
2.5.3.2 Degradation Mechanism Variation
50(1)
2.6 Technologies to Enhance the Device Performance
51(10)
2.6.1 Thermally Activated Delayed Fluorescence
51(2)
2.6.2 Other Types of Excited States
53(1)
2.6.2.1 Excimer and Exciplex
53(1)
2.6.2.2 Charge-Transfer Complex
53(1)
2.6.3 Charge Generation Layer
54(2)
References
56(5)
3 OLED Manufacturing Process
61(38)
3.1 Material Preparation
61(7)
3.1.1 Basic Material Properties
61(1)
3.1.1.1 Hole Injection Material
61(1)
3.1.1.2 Hole Transportation Material
62(1)
3.1.1.3 Emission Layer Material
62(1)
3.1.1.4 Electron Transportation Material and Charge Blocking Material
63(4)
3.1.2 Purification Process
67(1)
3.2 Evaporation Process
68(11)
3.2.1 Principle
68(4)
3.2.2 Evaporation Sources
72(1)
3.2.2.1 Resistive Heating Method
72(3)
3.2.2.2 Electron Beam Evaporation
75(1)
3.2.2.3 Monitoring Thickness Using a Quartz Oscillator
76(3)
3.3 Encapsulation
79(12)
3.3.1 Dark Spot and Edge Growth Defects
79(1)
3.3.2 Light Emission from the Bottom and Top of the OLED Device
80(1)
3.3.3 Bottom Emission and perimeter sealing
81(1)
3.3.4 Top Emission
82(1)
3.3.5 Encapsulation Technologies and Measurement
83(1)
3.3.5.1 Thin-Film Encapsulation
84(3)
3.3.5.2 Face Sealing Encapsulation
87(1)
3.3.5.3 Frit Encapsulation
88(1)
3.3.5.4 WVTR Measurement
88(3)
3.4 Problem Analysis
91(8)
3.4.1 Ionization Potential Measurement
91(1)
3.4.2 Electron Affinity Measurement
92(1)
3.4.3 HPLC Analysis
93(1)
3.4.4 Cyclic Voltammetry
94(2)
References
96(3)
4 OLED Display Module
99(44)
4.1 Comparison Between OLED and LCD Modules
99(2)
4.2 Basic Display Design and Related Characteristics
101(20)
4.2.1 Luminous Intensity, Luminance, and Illuminance
101(1)
4.2.1.1 Luminous Intensity
101(1)
4.2.1.2 Luminance
102(1)
4.2.1.3 Illuminance
103(1)
4.2.1.4 Metrics Summary
104(2)
4.2.1.5 Helmholtz--Kohlrausch Effect
106(1)
4.2.2 OLED Current Efficiencies and Power Efficacies
106(3)
4.2.3 Color Reproduction
109(6)
4.2.4 Uniform Color Space
115(1)
4.2.5 White Point Determination
116(3)
4.2.6 Color Boost
119(1)
4.2.7 Viewing Condition
120(1)
4.3 Passive-Matrix OLED Display
121(4)
4.3.1 Structure
121(1)
4.3.2 Pixel Driving
122(3)
4.4 Active-Matrix OLED Display
125(18)
4.4.1 OLED Module Components
125(2)
4.4.2 Two-Transistor One-Capacitor (2T1C) Driving Circuit
127(9)
4.4.3 Ambient Performance
136(1)
4.4.3.1 Living Room Contrast Ratio
136(1)
4.4.3.2 Chroma Reduction Due to Ambient Light
137(1)
4.4.4 Subpixel Rendering
138(1)
References
139(4)
5 OLED Color Patterning Technologies
143(24)
5.1 Color-Patterning Technologies
143(10)
5.1.1 Shadow Mask Patterning
143(1)
5.1.1.1 Shadow Mask Process
143(3)
5.1.1.2 Blue Common Layer
146(1)
5.1.1.3 Polychromatic Pixel
147(1)
5.1.2 White + Color Filter Patterning
148(1)
5.1.3 Color Conversion Medium (CCM) Patterning
149(1)
5.1.4 Laser-Induced Thermal Imaging (LITI) Method
149(2)
5.1.5 Radiation-Induced Sublimation Transfer (RIST) Method
151(1)
5.1.6 Dual-Plate OLED Display (DOD) Method
152(1)
5.1.7 Other Methods
153(1)
5.2 Solution-Processed Materials and Technologies
153(5)
5.3 Next-Generation OLED Manufacturing Tools
158(9)
5.3.1 Vapor Injection Source Technology (VIST) Deposition
158(5)
5.3.2 Hot-Wall Method
163(1)
5.3.3 Organic Vapor-Phase Deposition (OVPD) Method
164(1)
References
165(2)
6 TFT and Driving for Active-Matrix Display
167(48)
6.1 TFT Structure
167(2)
6.2 TFT Process
169(8)
6.2.1 Low-Temperature Polysilicon Process Overview
169(3)
6.2.2 Thin-Film Formation
172(1)
6.2.3 Patterning Technique
173(4)
6.2 A Excimer Laser Crystallization
177(3)
6.3 MOSFET Basics
180(3)
6.4 LTPS-TFT-Driven OLED Display Design
183(17)
6.4.1 OFF Current
183(1)
6.4.2 Driver TFT Size Restriction
184(1)
6.4.3 Restriction Due to Voltage Drop
185(5)
6.4.4 LTPS-TFT Pixel Compensation Circuit
190(1)
6.4.4.1 Voltage Programming
190(2)
6.4.4.2 Current Programming
192(1)
6.4.4.3 External Compensation Method
193(1)
6.4.4.4 Digital Driving
194(3)
6.4.5 Circuit Integration by LTPS-TFT
197(3)
6.5 TFT Technologies for OLED Displays
200(15)
6.5.1 Selective Annealing Method
200(1)
6.5.1.1 Sequential Lateral Solidification (SLS) Method
200(1)
6.5.1.2 Selective Annealing by Microlens Array
200(2)
6.5.2 Microcrystalline and Superamorphous Silicon
202(3)
6.5.3 Solid-Phase Crystallization
205(1)
6.5.3.1 MIC and MILC Methods
205(1)
6.5.3.2 AMFC Method
205(2)
6.5.4 Oxide Semiconductors
207(3)
References
210(5)
7 OLED Television Applications
215(20)
7.1 Performance Target
215(2)
7.2 Scalability Concept
217(2)
7.2.1 Relationship between Defect Density and Production Yield
217(1)
7.2.1.1 Purpose of Yield Simulation
217(1)
7.2.1.2 Defective Pixel Number Estimation Using the Poisson Equation
217(1)
7.2.2 Scalable Technology
217(1)
7.2.2.1 Scalability
218(1)
7.3 Murdoch's Algorithm to Achieve Low Power and Wide Color Gamut
219(5)
7.3.1 A Method for Achieving Both Low Power and Wide Color Gamut
219(2)
7.3.2 RGBW Driving Algorithm
221(3)
7.4 An Approach to Achieve 100% NTSC Color Gamut With Low Power Consumption Using White + Color Filter
224(11)
7.4.1 Consideration of Performance Difference between W-RGB and W-RGBW Method
224(1)
7.4.1.1 Issues of White + Color Filter Method for Large Displays
224(1)
7.4.1.2 Analysis of W-RGBW Approach to Circumvent Its Trade-off Situation
224(5)
7.4.1.3 Design of a Prototype to Demonstrate That Low Power Consumption Can Be Achieved with Large Color Gamut
229(1)
7.4.1.4 Product-Level Performance Demonstration by the Combination of Scalable Technologies
230(3)
References
233(2)
8 New OLED Applications
235(20)
8.1 Flexible Display/Wearable Displays
235(10)
8.1.1 Flexible Display Applications
235(1)
8.1.2 Flexible Display Substrates
235(1)
8.1.3 Laser Liftoff Process
236(4)
8.1.4 Barrier Technology for Flexible Displays
240(1)
8.1.5 Organic TFTs for Flexible Displays
241(1)
8.1.5.1 Organic Semiconductor Materials
242(1)
8.1.5.2 Organic TFT Device Structure and Processing
243(2)
8.1.5.3 Organic TFT Characteristics
245(1)
8.2 Transparent Displays
245(2)
8.3 Tiled Display
247(8)
8.3.1 Passive-Matrix Tiling
247(1)
8.3.2 Active-Matrix Tiling
248(4)
References
252(3)
9 OLED Lighting
255(22)
9.1 Performance Improvement of OLED Lighting
255(2)
9.2 Color Rendering Index
257(2)
9.3 OLED Lighting Requirement
259(3)
9.3.1 Correlated Color Temperature (CCT)
260(2)
9.3.2 Other Requirements
262(1)
9.4 Light Extraction Enhancement of OLED Lighting
262(7)
9.4.1 Various Light Absorption Mechanisms
262(4)
9.4.2 Microlens Array Structure
266(1)
9.4.3 Diffusion Structure
266(2)
9.4.4 Diffraction Structure
268(1)
9.4.5 Reduction of Plasmon Absorption
268(1)
9.4.5.1 Plasmonic Loss Mechanism
268(1)
9.5 Color Tunable OLED Lighting
269(3)
9.6 OLED Lighting Design
272(1)
9.6.1 Resistance Reduction
272(1)
9.6.2 Current Reduction
272(1)
9.7 Roll-to-Roll OLED Lighting Manufacturing
273(4)
References
275(2)
Appendix 277(4)
Index 281
Takatoshi Tsujimura is General Manager of the Konica Minolta Inc. He received an SID award for the development of the world's largest 20-inch OLED prototype and also received SID Fellow award for the development of 100% NTSC white + color filter technology. He has worked for Kodak and IBM and is an SID executive. Dr. Tsujimura was selected as one of the "10 best engineers/researchers in the 10 best Japanese companies" by Nikkei Electronics magazine.