Muutke küpsiste eelistusi

Operational Amplifiers: Theory and Design 3rd ed. 2017 [Kõva köide]

  • Formaat: Hardback, 423 pages, kõrgus x laius: 235x155 mm, kaal: 7981 g, 350 Illustrations, black and white; XXV, 423 p. 350 illus., 1 Hardback
  • Ilmumisaeg: 19-Jul-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319281267
  • ISBN-13: 9783319281261
Teised raamatud teemal:
  • Kõva köide
  • Hind: 104,29 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 122,69 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 423 pages, kõrgus x laius: 235x155 mm, kaal: 7981 g, 350 Illustrations, black and white; XXV, 423 p. 350 illus., 1 Hardback
  • Ilmumisaeg: 19-Jul-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319281267
  • ISBN-13: 9783319281261
Teised raamatud teemal:

This proven textbook guides readers to a thorough understanding of the theory and design of operational amplifiers (OpAmps). The core of the book presents systematically the design of operational amplifiers, classifying them into a periodic system of nine main overall configurations, ranging from one gain stage up to four or more stages. This division enables circuit designers to recognize quickly, understand, and choose optimal configurations.     Characterization of operational amplifiers is given by macro models and error matrices, together with measurement techniques for their parameters. Definitions are given for four types of operational amplifiers depending on the grounding of their input and output ports.

Many famous designs are evaluated in depth, using a carefully structured approach enhanced by numerous figures.  In order to reinforce the concepts introduced and facilitate self-evaluation of design skills, the author includes problems with detailed solutions, as well as simulation exercises.



This new edition contains state-of-the-art material as well as the essentials. It includes a systematic approach to the design of chopper and auto-zero OpAmps and Instrumentation Amplifiers with input offset voltages of the order of 1uV.
1 Definition of Operational Amplifiers
1(10)
1.1 Operational Inverting Amplifier
2(1)
1.1.1 Current-to-Voltage Converter
3(1)
1.2 Operational Voltage Amplifier
3(2)
1.2.1 Non-inverting Voltage Amplifier
3(1)
1.2.2 Voltage Follower
4(1)
1.3 Operational Current Amplifier
5(2)
1.3.1 Current Amplifier
5(1)
1.3.2 Current Follower
6(1)
1.4 Operational Floating Amplifier
7(1)
1.4.1 Voltage-to-Current Converter
7(1)
1.4.2 Voltage and Current Follower
7(1)
1.5 Conclusion
8(3)
References
9(2)
2 Macromodels
11(18)
2.1 Operational Inverting Amplifier
11(2)
2.1.1 Definition of Offset Voltage and Current, Input and Output Impedance, Transconductance
12(1)
2.2 Operational Voltage Amplifier
13(1)
2.2.1 Definition of Input Bias Current, Input Common-Mode Rejection Ratio
13(1)
2.3 Operational Current Amplifier
14(1)
2.3.1 Definition of Output Bias Current, Output Common-Mode Current Rejection Ratio
15(1)
2.4 Operational Floating Amplifier
15(1)
2.4.1 Using All Definitions
16(1)
2.5 Macromodels in SPICE
16(4)
2.5.1 Macromodel Mathematical
17(1)
2.5.2 Macromodel Miller-Compensated
17(1)
2.5.3 Macromodel Nested-Miller-Compensated
18(1)
2.5.4 Conclusion
19(1)
2.6 Measurement Techniques for Operational Amplifiers
20(4)
2.6.1 Transconductance Measurement of an OTA
20(1)
2.6.2 Voltage Gain Measurement of an OpAmp
21(1)
2.6.3 Voltage Gain and Offset Measurements of an OpAmp
22(1)
2.6.4 General Measurement Setup for an OpAmp
22(2)
2.7 Problems and Simulation Exercises
24(5)
2.7.1 Problem 2.1
24(1)
2.7.2 Solution
25(2)
2.7.3 Simulation Exercise 2.1
27(1)
2.7.4 Simulation Exercise 2.2
27(1)
References
28(1)
3 Applications
29(28)
3.1 Operational Inverting Amplifier
30(2)
3.1.1 Current-to-Voltage Converter
30(1)
3.1.2 Inverting Voltage Amplifier
31(1)
3.2 Operational Voltage Amplifier
32(3)
3.2.1 Non-inverting Voltage Amplifier
32(1)
3.2.2 Voltage Follower
33(1)
3.2.3 Bridge Instrumentation Amplifier
33(2)
3.3 Operational Current Amplifier
35(1)
3.3.1 Current Amplifier
35(1)
3.4 Operational Floating Amplifier
36(7)
3.4.1 Voltage-to-Current Converter
36(1)
3.4.2 Inverting Current Amplifier
37(1)
3.4.3 Differential Voltage-to-Current Converter
38(2)
3.4.4 Instrumentation Voltage Amplifier
40(1)
3.4.5 Instrumentation Current Amplifier
41(1)
3.4.6 Gyrator Floating
41(2)
3.4.7 Conclusion
43(1)
3.5 Dynamic Range
43(8)
3.5.1 Dynamic Range over Supply-Power Ratio
43(1)
3.5.2 Voltage-to-Current Converter
44(1)
3.5.3 Inverting Voltage Amplifier
45(1)
3.5.4 Non-inverting Voltage Amplifier
46(1)
3.5.5 Inverting Voltage Integrator
47(1)
3.5.6 Current Mirror
47(1)
3.5.7 Conclusion Current Mirror
48(1)
3.5.8 Nonideal Operational Amplifiers
49(1)
3.5.9 Conclusion
50(1)
3.6 Problems
51(6)
3.6.1 Problem 3.1
51(2)
3.6.2 Problem 3.2
53(1)
3.6.3 Problem 3.3
54(1)
References
55(2)
4 Input Stages
57(48)
4.1 Offset Bias, and Drift
57(12)
4.1.1 Isolation Techniques
58(1)
4.1.2 Balancing Techniques
59(4)
4.1.3 Offset Trimming
63(3)
4.1.4 Biasing for Constant Transconductance Gm Over Temperature
66(3)
4.2 Noise
69(3)
4.2.1 Isolation Techniques
69(2)
4.2.2 Balancing Techniques
71(1)
4.2.3 Conclusion
71(1)
4.3 Common-Mode Rejection
72(9)
4.3.1 Isolation Techniques
72(1)
4.3.2 Balancing Techniques
73(1)
4.3.3 Combination of Isolation and Balancing
74(1)
4.3.4 Common-Mode Cross-Talk Ratios
75(1)
4.3.5 Parallel Input Impedance
75(1)
4.3.6 Collector or Drain Impedance
76(1)
4.3.7 Tail Impedance
77(1)
4.3.8 Collector-Base Impedance
78(1)
4.3.9 Base Impedance
78(1)
4.3.10 Back-Gate Influence
79(1)
4.3.11 Total CMCR
80(1)
4.3.12 Conclusion
80(1)
4.4 Rail-to-Rail Input Stages
81(15)
4.4.1 Constant gm by Constant Sum of Tail-Currents
83(3)
4.4.2 Constant gm by Multiple Input Stages in Strong-Inversion CMOS
86(1)
4.4.3 Constant gm by Current Spillover Control
87(3)
4.4.4 Constant gm in CMOS by Saturation Control
90(3)
4.4.5 Constant gm in Strong-Inversion CMOS by Constant Sum of VGS
93(2)
4.4.6 Rail-to-Rail in CMOS by Back-Gate Driving
95(1)
4.4.7 Extension of the Common-Mode Input Range
95(1)
4.4.8 Conclusion
96(1)
4.5 Problems and Simulation Exercises
96(9)
4.5.1 Problem 4.1
96(2)
4.5.2 Problem 4.2
98(2)
4.5.3 Problem 4.3
100(1)
4.5.4 Simulation Exercise 4.1
101(1)
4.5.5 Simulation Exercise 4.2
101(1)
4.5.6 Simulation Exercise 4.3
102(1)
References
103(2)
5 Output Stages
105(52)
5.1 Power Efficiency of Output Stages
105(5)
5.2 Classification of Output Stages
110(2)
5.3 Feedforward Class-AB Biasing (FFB)
112(17)
5.3.1 FFB Voltage Follower Output Stages
112(5)
5.3.2 FFB Compound Output Stages
117(3)
5.3.3 FFB Rail-to-Rail General-Amplifier Output Stages
120(9)
5.3.4 Conclusion
129(1)
5.4 Feedback Class-AB Biasing (FBB)
129(13)
5.4.1 FBB Voltage-Follower Output Stages
130(1)
5.4.2 FBB Compound Output Stages
131(5)
5.4.3 FBB Rail-to-Rail General Amplifier Output Stages
136(5)
5.4.4 Conclusion
141(1)
5.5 Saturation Protection and Current Limitation
142(5)
5.5.1 Output Saturation Protection Circuits
142(2)
5.5.2 Output Current Limitation Circuits
144(3)
5.6 Problems and Simulation Exercises
147(10)
5.6.1 Problem 5.1
147(1)
5.6.2 Problem 5.2
148(1)
5.6.3 Problem 5.3
149(1)
5.6.4 Problem 5.4
150(1)
5.6.5 Problem 5.5
151(1)
5.6.6 Simulation Exercise 5.1
152(1)
5.6.7 Simulation Exercise 5.2
152(2)
References
154(3)
6 Overall Design
157(58)
6.1 Classification of Overall Topologies
157(6)
6.1.1 Nine Overall Topologies
157(5)
6.1.2 Voltage and Current Gain Boosting
162(1)
6.1.3 Input Voltage and Current Compensation
162(1)
6.2 Frequency Compensation
163(36)
6.2.1 One-GA-Stage Frequency Compensation
165(3)
6.2.2 Two-GA-stage Frequency Compensation
168(11)
6.2.3 Three-GA-Stage Frequency Compensation
179(7)
6.2.4 Four-GA-Stage Frequency Compensation
186(5)
6.2.5 Multi-GA-stage Compensations
191(1)
6.2.6 Compensation for Low Power and High Capacitive Load
191(8)
6.2.7 Conclusion
199(1)
6.3 Slew Rate
199(2)
6.4 Nonlinear Distortion
201(5)
6.4.1 Conclusion
206(1)
6.5 Problems and Simulation Exercises
206(9)
6.5.1 Problem 6.1
206(2)
6.5.2 Problem 6.2
208(1)
6.5.3 Problem 6.3
209(1)
6.5.4 Problem 6.4
210(1)
6.5.5 Problem 6.5
211(1)
6.5.6 Simulation Exercise 6.1
212(1)
6.5.7 Simulation Exercise 6.2
212(1)
References
213(2)
7 Design Examples
215(74)
7.1 GA-CF Configuration
215(14)
7.1.1 Operational Transconductance Amplifier
215(3)
7.1.2 Folded-Cascode Operational Amplifier
218(3)
7.1.3 Telescopic-Cascode Operational Amplifier
221(1)
7.1.4 Feedforward HF Compensation
222(2)
7.1.5 Input Voltage Compensation
224(2)
7.1.6 Input Class-AB Boosting
226(1)
7.1.7 Voltage-Gain Boosting
227(1)
7.1.8 Conclusion
228(1)
7.2 GA-GA Configuration
229(5)
7.2.1 Basic Bipolar R-R-Out Class-A Operational Amplifier
229(1)
7.2.2 Improved Basic Bipolar R-R-Out Class-A Operational Amplifier
230(2)
7.2.3 Basic CMOS R-R-Out Class-A Operational Amplifier
232(1)
7.2.4 Improved Basic CMOS R-R-Out Class-A Operational Amplifier
232(2)
7.2.5 Conclusion
234(1)
7.3 GA-CF-VF Configuration
234(4)
7.3.1 High-Speed Bipolar Class-AB Operational Amplifier
234(3)
7.3.2 High-Slew-Rate Bipolar Class-AB Voltage-Follower Buffer
237(1)
7.3.3 Conclusion
238(1)
7.4 GA-GA-VF Configuration
238(4)
7.4.1 General Bipolar Class-AB Operational Amplifier with Miller Compensation
239(2)
7.4.2 μA741 Operational Amplifier with Miller Compensation
241(1)
7.4.3 Conclusion
242(1)
7.5 GA-CF-VF/GA Configuration
242(3)
7.5.1 High-Frequency All-NPN Operational Amplifier with Mixed PC and MC
243(2)
7.5.2 Conclusion
245(1)
7.6 GA-GA-VF/GA Configuration
245(10)
7.6.1 LM101 Class-AB All-NPN Operational Amplifier with MC
246(1)
7.6.2 NE5534 Class-AB Operational Amplifier with Bypassed NMC
247(2)
7.6.3 Precision All-NPN Class-AB Operational Amplifier with NMC
249(2)
7.6.4 Precision HF All-NPN Class-AB Operational Amplifier with MNMC
251(2)
7.6.5 1 GHz, All-NPN Class-AB Operational Amplifier with MNMC
253(1)
7.6.6 2 V Power-Efficient All-NPN Class-AB Operational Amplifier with MDNMC
254(1)
7.6.7 Conclusion
255(1)
7.7 GA-CF-GA Configuration
255(10)
7.7.1 Compact 1.2 V R-R-Out CMOS Class-A OpAmp with MC
255(3)
7.7.2 Compact 2 V R-R-Out CMOS Class-AB OpAmp with MC
258(2)
7.7.3 Compact 2 V R-R-In/Out CMOS Class-AB OpAmp with MC
260(4)
7.7.4 Compact 1.2 V R-R-Out CMOS Class-AB OpAmp with MC
264(1)
7.7.5 Conclusion
265(1)
7.8 GA-GA-GA Configuration
265(8)
7.8.1 1 V R-R-Out CMOS Class-AB OpAmp with MNMC
265(3)
7.8.2 Compact 1.2 V R-R-Out BiCMOS Class-AB OpAmp with MNMC
268(2)
7.8.3 Bipolar Input and Output Protection
270(1)
7.8.4 1.8 V R-R-In/Out Bipolar Class-AB OpAmp (NE5234) with NMC
270(3)
7.8.5 Conclusion
273(1)
7.9 GA-GA-GA-GA Configuration
273(7)
7.9.1 1 V R-R-In/Out Bipolar Class-AB OpAmp with MNMC
273(4)
7.9.2 1.2 V R-R-Out CMOS Class-AB OpAmp with MHNMC
277(3)
7.9.3 Conclusion
280(1)
7.10 Problems and Simulation Exercises
280(9)
7.10.1 Problem 7.1
280(2)
7.10.2 Problem 7.2
282(1)
7.10.3 Problem 7.3
283(2)
7.10.4 Problem 7.4
285(1)
7.10.5 Simulation Exercise 7.1
286(1)
7.10.6 Simulation Exercise 7.2
287(1)
References
287(2)
8 Fully Differential Operational Amplifiers
289(18)
8.1 Fully Differential GA-CF Configuration
290(7)
8.1.1 Fully Differential CMOS OpAmp with Linear-Mode CM-Out Control
290(2)
8.1.2 Fully Differential Telescopic CMOS OpAmp with Linear-Mode CM-Out Control
292(1)
8.1.3 Fully Differential CMOS OpAmp with LTP CM-Out Control
292(2)
8.1.4 Fully Differential GA-CF CMOS OpAmp with Output Voltage Gain Boosters
294(1)
8.1.5 Fully Differential GA-CF CMOS OpAmp with Input-CM Feedback CM-Out Control
295(1)
8.1.6 Fully Differential CMOS OpAmp with R-R Buffered Resistive CM-Out Control
295(2)
8.2 Fully Differential GA-CF-GA Configuration
297(3)
8.2.1 Fully Differential CMOS OpAmp with R-R Resistive CM-Out Control
298(2)
8.2.2 Conclusion
300(1)
8.3 Fully Differential GA-GA-GA-GA Configuration
300(2)
8.3.1 Fully Differential CMOS OpAmp with Switched-Capacitor CM-Out Control
300(1)
8.3.2 Conclusion
301(1)
8.4 Problems and Simulation Exercises
302(5)
8.4.1 Problem 8.1
302(1)
8.4.2 Problem 8.2
303(1)
8.4.3 Simulation Exercise 8.1
304(2)
References
306(1)
9 Instrumentation Amplifiers and Operational Floating Amplifiers
307(44)
9.1 Introduction
307(2)
9.2 Unipolar Voltage-to-Current Converter
309(6)
9.2.1 Unipolar Single-Transistor V-I Converter
310(1)
9.2.2 Unipolar OpAmp-Gain-Boosted Accurate V-I Converter
311(1)
9.2.3 Unipolar CMOS Accurate V-I Converter
312(1)
9.2.4 Unipolar Bipolar Accurate V-I Converter
312(2)
9.2.5 Unipolar OpAmp Accurate V-I Converter
314(1)
9.2.6 Conclusion
315(1)
9.3 Differential Voltage-to-Current Converters
315(3)
9.3.1 Differential Simple V-I Converter
315(1)
9.3.2 Differential Accurate V-I Converter
316(1)
9.3.3 Differential CMOS Accurate V-I Converter
317(1)
9.4 Instrumentation Amplifiers
318(8)
9.4.1 Instrumentation Amplifier (Semi) with Three OpAmps
318(1)
9.4.2 Instrumentation Amplifier with a Differential V-I Converter for Input Sensing
319(1)
9.4.3 Instrumentation Amplifier with Differential V-I Converters for Input and Output Sensing
320(1)
9.4.4 Instrumentation Amplifier with Simple Differential V-I Converters for Input and Output Sensing
321(2)
9.4.5 Instrumentation Amplifier Bipolar with Common-Mode Voltage Range Including Negative Rail Voltage
323(1)
9.4.6 Instrumentation Amplifier CMOS with Common-Mode Voltage Range Including Negative Rail Voltage
324(1)
9.4.7 Instrumentation Amplifier Simplified Diagram and General Symbol
325(1)
9.4.8 Conclusion
325(1)
9.5 Universal Class-AB Voltage-to-Current Converter Design Using an Instrumentation Amplifier
326(3)
9.5.1 Universal V-I Converter Design with Semi-instrumentation Amplifier
327(1)
9.5.2 Universal V-I Converter Design with Real Instrumentation Amplifier
328(1)
9.5.3 Conclusion
329(1)
9.6 Universal Class-A OFA Design
329(7)
9.6.1 Universal Class-A OFA Design with Floating Zener-Diode Supply
330(1)
9.6.2 Universal Class-A OFA Design with Supply Current Followers
330(2)
9.6.3 Universal Class-A OFA Design with Long-Tailed-Pairs
332(4)
9.6.4 Conclusion
336(1)
9.7 Universal Class-AB OFA Realization with Power-Supply Isolation
336(1)
9.7.1 Universal Floating Power Supply Design
337(1)
9.7.2 Conclusion
337(1)
9.8 Universal Class-AB OFA Design
337(8)
9.8.1 Universal Class-AB OFA Design with Total-Output-Supply-Current Equalization
338(3)
9.8.2 Universal Class-AB OFA Design with Current Mirrors
341(1)
9.8.3 Universal Class-AB OFA Design with Output-Current Equalization
342(1)
9.8.4 Universal Class-AB Voltage-to-Current Converter with Instrumentation Amplifier
343(1)
9.8.5 Conclusion
344(1)
9.9 Problems
345(6)
9.9.1 Problem 9.1
345(2)
9.9.2 Problem 9.2
347(1)
9.9.3 Problem 9.3
348(1)
References
349(2)
10 Low-Noise and Low-Offset Operational and Instrumentation Amplifiers
351(64)
10.1 Introduction
351(1)
10.2 Applications of Instrumentation Amplifiers
352(2)
10.3 Three-OpAmp Instrumentation Amplifiers
354(2)
10.4 Current-Feedback Instrumentation Amplifiers
356(2)
10.5 Auto-Zero OpAmps and InstAmps
358(4)
10.6 Chopper OpAmps and InstAmps
362(5)
10.7 Chopper-Stabilized OpAmps and InstAmps
367(6)
10.8 Chopper-Stabilized Chopper OpAmps and InstAmps
373(4)
10.9 Chopper Amplifiers with Ripple-Reduction Loop
377(7)
10.10 Chopper Amplifiers with Capacitive-Coupled Input
384(20)
10.10.1 Wide-Band Chopper Amplifiers with Capacitive-Coupled Input
390(7)
10.10.2 Fully Floating Capacitive-Coupled Input Choppers
397(7)
10.11 Gain Accuracy of Instrumentation Amplifiers
404(7)
10.11.1 Conclusion
411(1)
10.12 Summary Low Offset
411(4)
References
412(3)
Author Biography 415(2)
Index 417
Johan H. Huijsing received his M.Sc. in Electrical Engineering from Delft University of Technology, Delft, The Netherlands, in 1969, and his Ph.D. from the same University in 1981 for work on operational amplifiers. Since 1969 he has been a member of the Research and Teaching Staff of the Electronic Instrumentation Laboratory, Department of Electrical Engineering, Delft University of Technology, where he became a full Professor of Electronic Instrumentation since 1990, and professor-emeritus since 2003. He teaches courses on Electrical Measurement Techniques, Electronic Instrumentation, Operational Amplifiers and Analog-to-digital Converters. His field of research is Analog Circuit Design (operational amplifiers, analog multipliers, etc.) and Integrated Smart Sensors. He is author or co-author of some 250 scientific papers, 40 patents and 13 books, and co-editor of 13 books. He is fellow of IEEE. He received the title award of "Simon Stevin Meester" from the Dutch TechnologyFoundation.