Preface |
|
xi | |
List of Symbols |
|
xv | |
1 Integral Transforms |
|
1 | (162) |
|
1.1 Introduction to Operational Calculus |
|
|
1 | (4) |
|
1.2 Integral Transforms — Introductory Remarks |
|
|
5 | (3) |
|
1.3 The Fourier Transform |
|
|
8 | (19) |
|
1.3.1 Definition and Basic Properties |
|
|
8 | (3) |
|
|
11 | (2) |
|
1.3.3 Operational Properties |
|
|
13 | (4) |
|
1.3.4 The Inversion Formula |
|
|
17 | (4) |
|
|
21 | (6) |
|
1.4 The Laplace Transform |
|
|
27 | (28) |
|
1.4.1 Definition and Basic Properties |
|
|
27 | (4) |
|
|
31 | (2) |
|
1.4.3 Operational Properties |
|
|
33 | (4) |
|
1.4.4 The Complex Inversion Formula |
|
|
37 | (3) |
|
|
40 | (4) |
|
1.4.6 Asymptotic Behavior |
|
|
44 | (3) |
|
1.4.7 Remarks on the Bilateral Laplace Transform |
|
|
47 | (2) |
|
|
49 | (6) |
|
|
55 | (12) |
|
1.5.1 Definition and Basic Properties |
|
|
55 | (3) |
|
1.5.2 Operational Properties |
|
|
58 | (4) |
|
1.5.3 The Complex Inversion Formula |
|
|
62 | (1) |
|
|
63 | (4) |
|
1.6 The Stieltjes Transform |
|
|
67 | (11) |
|
1.6.1 Definition and Basic Properties |
|
|
67 | (3) |
|
1.6.2 Operational Properties |
|
|
70 | (3) |
|
|
73 | (2) |
|
1.6.4 Inversion and Application |
|
|
75 | (3) |
|
1.7 The Hilbert Transform |
|
|
78 | (6) |
|
1.7.1 Definition and Basic Properties |
|
|
78 | (3) |
|
1.7.2 Operational Properties |
|
|
81 | (2) |
|
|
83 | (1) |
|
|
84 | (23) |
|
1.8.1 The Hankel Transform |
|
|
85 | (8) |
|
1.8.2 The Meijer (K-) Transform |
|
|
93 | (7) |
|
1.8.3 The Kontorovich—Lebedev Transform |
|
|
100 | (6) |
|
|
106 | (1) |
|
1.9 The Mehler—Fock Transform |
|
|
107 | (8) |
|
1.10 Finite Integral Transforms |
|
|
115 | (48) |
|
|
115 | (1) |
|
1.10.2 The Chebyshev Transform |
|
|
116 | (6) |
|
1.10.3 The Legendre Transform |
|
|
122 | (9) |
|
1.10.4 The Gegenbauer Transform |
|
|
131 | (6) |
|
1.10.5 The Jacobi Transform |
|
|
137 | (7) |
|
1.10.6 The Laguerre Transform |
|
|
144 | (9) |
|
1.10.7 The Hermite Transform |
|
|
153 | (10) |
2 Operational Calculus |
|
163 | (108) |
|
|
163 | (4) |
|
|
167 | (13) |
|
|
180 | (39) |
|
|
180 | (5) |
|
2.3.2 The Field of Operators |
|
|
185 | (5) |
|
2.3.3 Finite Parts of Divergent Integrals |
|
|
190 | (11) |
|
|
201 | (4) |
|
2.3.5 Laplace Transformable Operators |
|
|
205 | (8) |
|
|
213 | (4) |
|
|
217 | (2) |
|
2.4 Bases of the Operator Analysis |
|
|
219 | (17) |
|
2.4.1 Sequences and Series of Operators |
|
|
219 | (7) |
|
|
226 | (3) |
|
2.4.3 The Derivative of an Operator Function |
|
|
229 | (1) |
|
2.4.4 Properties of the Continuous Derivative of an Operator Function |
|
|
229 | (3) |
|
2.4.5 The Integral of an Operator Function |
|
|
232 | (4) |
|
2.5 Operators Reducible to Functions |
|
|
236 | (11) |
|
|
236 | (3) |
|
2.5.2 The Realization of Some Operators |
|
|
239 | (3) |
|
|
242 | (5) |
|
2.6 Application of Operational Calculus |
|
|
247 | (24) |
|
2.6.1 Ordinary Differential Equations |
|
|
247 | (11) |
|
2.6.2 Partial Differential Equations |
|
|
258 | (13) |
3 Generalized Functions |
|
271 | (118) |
|
|
271 | (1) |
|
3.2 Generalized Functions — Functional Approach |
|
|
272 | (15) |
|
|
272 | (2) |
|
3.2.2 Distributions of One Variable |
|
|
274 | (5) |
|
3.2.3 Distributional Convergence |
|
|
279 | (1) |
|
3.2.4 Algebraic Operations on Distributions |
|
|
280 | (7) |
|
3.3 Generalized Functions — Sequential Approach |
|
|
287 | (24) |
|
3.3.1 The Identification Principle |
|
|
287 | (2) |
|
3.3.2 Fundamental Sequences |
|
|
289 | (8) |
|
3.3.3 Definition of Distributions |
|
|
297 | (3) |
|
3.3.4 Operations with Distributions |
|
|
300 | (3) |
|
|
303 | (8) |
|
|
311 | (21) |
|
3.4.1 Definition and Properties |
|
|
311 | (6) |
|
3.4.2 Distributions as a Generalization of Continuous Functions |
|
|
317 | (3) |
|
3.4.3 Distributions as a Generalization of Locally Integrable Functions |
|
|
320 | (2) |
|
3.4.4 Remarks about Distributional Derivatives |
|
|
322 | (3) |
|
3.4.5 Functions with Poles |
|
|
325 | (1) |
|
|
326 | (6) |
|
|
332 | (15) |
|
3.5.1 Sequences of Distributions |
|
|
332 | (7) |
|
3.5.2 Convergence and Regular Operations |
|
|
339 | (2) |
|
3.5.3 Distributionally Convergent Sequences of Smooth Functions |
|
|
341 | (3) |
|
3.5.4 Convolution of Distribution with a Smooth Function of Bounded Support |
|
|
344 | (2) |
|
|
346 | (1) |
|
|
347 | (8) |
|
3.6.1 Inner Product of Two Functions |
|
|
347 | (3) |
|
3.6.2 Distributions of Finite Order |
|
|
350 | (2) |
|
3.6.3 The Value of a Distribution at a Point |
|
|
352 | (3) |
|
3.6.4 The Value of a Distribution at Infinity |
|
|
355 | (1) |
|
3.6.5 Support of a Distribution |
|
|
355 | (1) |
|
|
355 | (26) |
|
|
355 | (2) |
|
3.7.2 The Integral of Distributions |
|
|
357 | (12) |
|
3.7.3 Convolution of Distributions |
|
|
369 | (6) |
|
3.7.4 Multiplication of Distributions |
|
|
375 | (4) |
|
|
379 | (2) |
|
3.8 Hilbert Transform and Multiplication Forms |
|
|
381 | (8) |
|
3.8.1 Definition of the Hilbert Transform |
|
|
381 | (2) |
|
3.8.2 Applications and Examples |
|
|
383 | (6) |
References |
|
389 | (12) |
Index |
|
401 | |