Muutke küpsiste eelistusi

Optical Design: Applying the Fundamentals [Pehme köide]

  • Formaat: Paperback / softback, 190 pages, kaal: 350 g, Illustrations
  • Sari: Tutorial Texts
  • Ilmumisaeg: 04-Dec-2009
  • Kirjastus: SPIE Press
  • ISBN-10: 0819477990
  • ISBN-13: 9780819477996
Teised raamatud teemal:
  • Formaat: Paperback / softback, 190 pages, kaal: 350 g, Illustrations
  • Sari: Tutorial Texts
  • Ilmumisaeg: 04-Dec-2009
  • Kirjastus: SPIE Press
  • ISBN-10: 0819477990
  • ISBN-13: 9780819477996
Teised raamatud teemal:
This text is written for engineers and scientists who have some experience in the field of optics and want to know more about the details and derivations of equations used in optical design. Organized by topic, the book begins with the fundamental law of geometrical optics, Snell's law of refraction, and states the paraxial ray trace equations, then moves on to thin lenses and increasingly more sophisticated components and multi-element systems. Each topic is covered in depth and provides comprehensive information on performance and limitations. While the text is based on general optical laws, special emphasis has been placed on the two major infrared regions - the mid-wave (MWIR) and the long-wave (LWIR). This is particularly important with regard to diffractive hybrids, which have found their place in these long wavelength areas for the correction of chromatic aberrations and athermalization. Comments relating to single-point diamond turning have also been included because this process is predominantly used to produce optical elements for the infrared regions.
Preface xv
Chapter 1 Law of Refraction: The Foundation of Geometrical Optics
1(10)
1.1 Introduction
1(1)
1.2 Fermat's Principle
1(2)
1.2.1 Historic remarks
1(1)
1.2.2 Derivation
1(2)
1.3 Snell and the Lens
3(1)
1.4 Graphical Ray Tracing
4(1)
1.5 Paraxial Ray Tracing
5(6)
1.5.1 Equations, symbols, and sign conventions
6(5)
Chapter 2 Best Shape for a Thin Lens
11(12)
2.1 Concept of Thin Lens
11(1)
2.2 Object at Any Position
12(4)
2.3 Object at Infinity with Added Field of View
16(5)
2.3.1 Spherical aberration
16(2)
2.3.2 Chromatic aberration
18(1)
2.3.3 Coma
19(1)
2.3.4 Astigmatism
19(2)
2.3.5 Total blur-spot size
21(1)
2.4 Special Case
21(2)
Chapter 3 Best Shapes for Multiple Thin Lenses, Aspherizing, and the Natural Stop Position
23(10)
3.1 Introduction
23(1)
3.2 Best Shapes for Minimum Spherical Aberration
23(3)
3.3 Aspherizing a Singlet to Eliminate Spherical Aberration
26(2)
3.4 Correcting Coma and Spherical Aberration
28(3)
3.4.1 Eliminating coma
28(1)
3.4.2 Eliminating spherical aberration
29(2)
3.5 Natural Stop Position
31(2)
Chapter 4 Transition from a Thin Lens to a Thick Lens
33(6)
4.1 Introduction
33(1)
4.2 Adding a Thickness and Changing the Second Surface Radius
33(2)
4.2.1 VIS singlet with N = 1.5
34(1)
4.2.2 MWIR singlet with N = 3.4
35(1)
4.2.3 LWTR singlet with N = 4
35(1)
4.3 Change of Spherical Aberration with Added Thickness
35(4)
Chapter 5 Achromats
39(18)
5.1 Introduction
39(1)
5.2 Thin Achromat for the VIS Spectrum, On-Axis Performance
39(6)
5.2.1 Adding a field to the on-axis corrected achromat
43(2)
5.2.2 Optimizing
45(1)
5.3 Smith's Method of Determining the Surface Shapes
45(3)
5.3.1 Curvatures and inverse object distances
45(1)
5.3.2 The K-functions
46(1)
5.3.3 The calculations
47(1)
5.4 Achromat for the MWTR Region
48(2)
5.5 Achromat for the LWIR Region
50(1)
5.6 Diamond-Turned Hybrid
50(7)
5.6.1 Hybrid for the MWIR region
51(1)
5.6.1.1 Basic lens shape
51(1)
5.6.1.2 Aspherizing
52(1)
5.6.1.3 The diffractive phase profile
52(1)
5.6.1.4 Comments
53(2)
5.6.2 Useful nomograms
55(2)
Chapter 6 Systems with Two Separated Components
57(8)
6.1 Introduction
57(1)
6.2 Dialyte---An Air-Spaced Achromat
57(5)
6.2.1 Example for the MWIR region
59(2)
6.2.1.1 Aspheric deformation coefficients of surface 3
61(1)
6.2.1.2 Phase coefficients
61(1)
6.2.1.3 Step height at the zone transition
62(1)
6.3 Telephoto and Reversed Telephoto
62(3)
6.3.1 Examples for the MWIR and LWIR regions
63(2)
Chapter 7 From an Air-Spaced Doublet to a Triplet
65(4)
7.1 Introduction
65(1)
7.2 Chromatic Aberration
66(1)
7.3 Example, a Conventional Triplet
66(1)
7.4 Hybrid Petzval Objective with a Cold Stop
67(2)
Chapter 8 A Hybrid for Two Wavelengths
69(4)
8.1 Introduction
69(1)
8.2 Basic Lens Shape for the Long Wavelength
69(1)
8.3 Required Diffractive Profile
70(3)
Chapter 9 Athermats
73(16)
9.1 Introduction
73(1)
9.2 Focus Shift of a Refractive Element
73(1)
9.3 Athermalization with a Doublet
74(1)
9.4 Focus Shift of a Diffractive Lens
74(4)
9.5 Design Examples
78(2)
9.5.1 Athermat with two elements in an aluminum housing
78(1)
9.5.2 Hybrid athermat in an aluminum housing
79(1)
9.6 Impact of Housing Material
80(1)
9.7 Athermat for the CO2 Laser Line
81(3)
9.8 Athermalized Achromat
84(3)
9.8.1 Three-element athermat in an aluminum housing
85(1)
9.8.2 Two-element athermat in an aluminum housing
86(1)
9.9 Effect of Quarter-Wave Limit without Athermalization
87(2)
Chapter 10 The Ball Lens
89(6)
10.1 Introduction
89(1)
10.2 Spherical Aberration
90(1)
10.3 Coma
91(1)
10.4 Astigmatism
92(3)
Chapter 11 Seidel and the Pegel Diagrams
95(6)
11.1 Introduction
95(1)
11.2 Triplet for the LWIR Region
95(3)
11.2.1 Surface contributions
96(1)
11.2.2 Pegel diagram for the triplet
96(1)
11.2.3 Remarks to field curvature
97(1)
11.3 Cassegrain Version with a Maksutov-Mangin Mirror Combination for the LWIR Region
98(3)
11.3.1 Pegel diagram
98(3)
Chapter 12 The Single-Imaging Mirror
101(12)
12.1 Introduction
101(1)
12.2 Spherical Mirror
101(3)
12.3 Toroidal Mirrors
104(1)
12.4 Examples
104(3)
12.4.1 Spherical mirror
106(1)
12.4.1.1 Additional comments
106(1)
12.4.2 Toroidal mirror
107(1)
12.5 Parabolic Mirror
107(2)
12.6 Manufacturing Remarks
109(1)
12.7 Mangin Mirror
109(4)
Chapter 13 Eight Single Optical Elements as Imaging Objectives
113(6)
13.1 Introduction
113(1)
13.2 Diffraction Limit
113(1)
13.3 Eight Chosen Configurations
113(2)
13.4 Shapes of the Elements
115(1)
13.5 Aberrations
116(1)
13.6 Examples
117(2)
Chapter 14 A Progression of Performance with an Increase in Lens Complexity
119(2)
14.1 Objectives
119(2)
Chapter 15 Two-Mirror Systems as Telescope and Microscope Objectives
121(16)
15.1 Introduction
121(1)
15.2 Basic Cassegrain Telescope Layout
122(1)
15.2.1 Equations
123(1)
15.3 Cassegrain with Two Spherical Mirrors
123(1)
15.4 Classic Cassegrain System
124(1)
15.5 Dall-Kirkham Arrangement
124(1)
15.6 Ritchey-Chretien Configuration
125(1)
15.7 Examples
125(1)
15.8 Cassegrain with Mangin as a Secondary Reflector
126(1)
15.9 Gregorian Telescope
127(3)
15.10 Gregorian Microscope Objective
130(1)
15.11 Two Schwarzschild Objectives
131(5)
15.11.1 Prescription for the classic configuration for an object at infinity
133(1)
15.11.1.1 Brief historic remark about the golden ratio
134(1)
15.11.2 Prescription for the inverted configuration for an object at infinity
134(2)
15.12 Solid Microscope Objective
136(1)
Chapter 16 The Plane-Parallel Plate
137(10)
16.1 Introduction
137(1)
16.2 Aberrations
138(3)
16.2.1 Examples
140(1)
16.3 Shift of Image
141(2)
16.4 Tilted Plate
143(1)
16.4.1 Lateral displacement
144(1)
16.5 Two Tilted Plates
144(3)
Chapter 17 MTF, Limits, and Pixel Sizes
147(4)
17.1 Introduction
147(1)
17.2 Optical Modulation Transfer Function
147(1)
17.3 Focal Plane Array
148(3)
Chapter 18 Details of a Hybrid Lens
151(6)
18.1 Introduction
151(1)
18.2 Hybrid
151(2)
18.3 Coordinates of the Combined Surface
153(4)
Chapter 19 From the Hoegh Meniscus to Double Anastigmats
157(12)
19.1 Introduction
157(1)
19.2 Hoegh Meniscus
157(3)
19.2.1 Approach and design method
158(2)
19.3 Hypergon Lens
160(1)
19.4 Achromatic Double Lens
161(4)
19.4.1 Approach and design method
162(3)
19.5 Double Anastigmats
165(4)
19.5.1 Approach and design method
165(4)
Index 169