Muutke küpsiste eelistusi

Optical Methods of Measurement: Wholefield Techniques, Second Edition 2nd edition [Pehme köide]

(Austin, Texas, USA)
  • Formaat: Paperback / softback, 316 pages, kõrgus x laius: 234x156 mm, kaal: 580 g, 11 Tables, black and white; 128 Illustrations, black and white
  • Sari: Optical Science and Engineering
  • Ilmumisaeg: 14-Jun-2017
  • Kirjastus: CRC Press
  • ISBN-10: 1138115495
  • ISBN-13: 9781138115491
Teised raamatud teemal:
  • Formaat: Paperback / softback, 316 pages, kõrgus x laius: 234x156 mm, kaal: 580 g, 11 Tables, black and white; 128 Illustrations, black and white
  • Sari: Optical Science and Engineering
  • Ilmumisaeg: 14-Jun-2017
  • Kirjastus: CRC Press
  • ISBN-10: 1138115495
  • ISBN-13: 9781138115491
Teised raamatud teemal:

Optical Methods of Measurement: Wholefield Techniques, Second Edition provides a comprehensive collection of wholefield optical measurement techniques for engineering applications. Along with the reorganization of contents, this edition includes a new chapter on optical interference, new material on nondiffracting and singular beams and their applications, and updated bibliography and additional reading sections.

The book explores the propagation of laser beams, metrological applications of phase-singular beams, various detectors such as CCD and CMOS devices, and recording materials. It also covers interference, diffraction, and digital fringe pattern measurement techniques, with special emphasis on phase measurement interferometry and algorithms. The remainder of the book focuses on theory, experimental arrangements, and applications of wholefield techniques. The author discusses digital hologram interferometry, digital speckle photography, digital speckle pattern interferometry, Talbot interferometry, and holophotoelasticity.

This updated book compiles the major wholefield methods of measurement in one volume. It provides a solid understanding of the techniques by describing the physics behind them. In addition, the examples given illustrate how the techniques solve measurement problems.

From the Series Editor xix
Preface xxi
Preface to First Edition xxiii
Author xxv
Chapter 1 Waves and Beams 1(18)
1.1 The Wave Equation
1(1)
1.2 Plane Waves
2(1)
1.3 Spherical Waves
2(1)
1.4 Cylindrical Waves
2(1)
1.5 Waves as Information Carriers
3(2)
1.5.1 Amplitude/Intensity-Based Sensors
4(1)
1.5.2 Sensors Based on Phase Measurement
4(1)
1.5.3 Sensors Based on Polarization
5(1)
1.5.4 Sensors Based on Frequency Measurement
5(1)
1.5.5 Sensors Based on Change of Direction
5(1)
1.6 The Laser Beam
5(1)
1.7 The Gaussian Beam
6(2)
1.8 ABCD Matrix Applied to Gaussian Beams
8(4)
1.8.1 Propagation in Free Space
9(1)
1.8.2 Propagation through a Thin Lens
10(2)
1.8.3 Mode Matching
12(1)
1.9 Nondiffracting Beams-Bessel Beams
12(1)
1.10 Singular Beams
13(4)
Bibliography
17(1)
Additional Reading
17(2)
Chapter 2 Optical Interference 19(24)
2.1 Introduction
19(1)
2.2 Generation of Coherent Waves
20(1)
2.2.1 Interference by Division of Wavefront
20(1)
2.2.2 Interference by Division of Amplitude
20(1)
2.3 Interference between Two Plane Monochromatic Waves
21(4)
2.3.1 Young's Double-Slit Experiment
22(2)
2.3.2 Michelson Interferometer
24(1)
2.4 Multiple-Beam Interference
25(4)
2.4.1 Multiple-Beam Interference: Division of Wavefront
25(2)
2.4.2 Multiple-Beam Interference: Division of Amplitude
27(2)
2.4.2.1 Interference Pattern in Transmission
27(2)
2.4.2.2 Interference Pattern in Reflection
29(1)
2.5 Interferometry
29(10)
2.5.1 Dual-Wavelength Interferometry
30(1)
2.5.2 White Light Interferometry
31(1)
2.5.3 Heterodyne Interferometry
31(1)
2.5.4 Shear Interferometry
32(1)
2.5.5 Polarization Interferometers
33(1)
2.5.6 Interference Microscopy
34(2)
2.5.7 Doppler Interferometry
36(1)
2.5.8 Fiber-Optic Interferometers
37(1)
2.5.9 Phase-Conjugation Interferometers
38(1)
Bibliography
39(1)
Additional Reading
40(3)
Chapter 3 Diffraction 43(16)
3.1 Fresnel Diffraction
43(1)
3.2 Fraunhofer Diffraction
44(1)
3.3 Action of a Lens
45(1)
3.4 Image Formation and Fourier Transformation by a Lens
45(4)
3.4.1 Image Formation
47(1)
3.4.2 Fourier Transformation
47(2)
3.5 Optical Filtering
49(1)
3.6 Optical Components in Optical Metrology
50(7)
3.6.1 Reflective Optical Components
50(1)
3.6.2 Refractive Optical Components
50(2)
3.6.3 Diffractive Optical Components
52(4)
3.6.3.1 Sinusoidal Grating
55(1)
3.6.4 Phase Grating
56(1)
3.6.5 Diffraction Efficiency
57(1)
3.7 Resolving Power of Optical Systems
57(1)
Bibliography
58(1)
Chapter 4 Phase-Evaluation Methods 59(20)
4.1 Interference Equation
59(1)
4.2 Fringe Skeletonization
60(1)
4.3 Temporal Heterodyning
61(1)
4.4 Phase-Sampling Evaluation: Quasi-Heterodyning
62(1)
4.5 Phase-Shifting Method
63(1)
4.6 Phase-Shifting with Unknown but Constant Phase-Step
63(3)
4.7 Spatial Phase-Shifting
66(2)
4.8 Methods of Phase-Shifting
68(4)
4.8.1 PZT-Mounted Mirror
68(1)
4.8.2 Tilt of Glass Plate
69(1)
4.8.3 Rotation of Polarization Component
70(2)
4.8.4 Motion of a Diffraction Grating
72(1)
4.8.5 Use of a CGH Written on a Spatial Light Modulator
72(1)
4.8.6 Special Methods
72(1)
4.9 Fourier Transform Method
72(1)
4.10 Spatial Heterodyning
73(2)
Bibliography
75(1)
Additional Reading
75(4)
Chapter 5 Detectors and Recording Materials 79(22)
5.1 Detector Characteristics
79(1)
5.2 Detectors
80(4)
5.2.1 Photoconductors
80(1)
5.2.2 Photodiodes
81(3)
5.2.3 Photomultiplier Tube
84(1)
5.3 Image Detectors
84(5)
5.3.1 Time-Delay and Integration Mode of Operation
89(1)
5.4 Recording Materials
89(9)
5.4.1 Photographic Films and Plates
90(4)
5.4.2 Dichromated Gelatin
94(1)
5.4.3 Photoresists
95(1)
5.4.4 Photopolymers
95(1)
5.4.5 Thermoplastics
96(1)
5.4.6 Photochromics
96(1)
5.4.7 Ferroelectric Crystals
97(1)
Bibliography
98(1)
Additional Reading
98(3)
Chapter 6 Holographic Interferometry 101(48)
6.1 Introduction
101(1)
6.2 Hologram Recording
102(1)
6.3 Reconstruction
103(1)
6.4 Choice of Angle of Reference Wave
104(1)
6.5 Choice of Reference Wave Intensity
105(1)
6.6 Types of Holograms
105(1)
6.7 Diffraction Efficiency
105(1)
6.8 Experimental Arrangement
105(3)
6.8.1 Lasers
106(1)
6.8.2 Beam-Splitters
107(1)
6.8.3 Beam-Expanders
107(1)
6.8.4 Object-Illumination Beam
107(1)
6.8.5 Reference Beam
107(1)
6.8.6 Angle between Object and Reference Beams
108(1)
6.9 Holographic Recording Materials
108(1)
6.10 Holographic Interferometry
108(7)
6.10.1 Real-Time HI
108(1)
6.10.2 Double-Exposure HI
109(1)
6.10.3 Time-Average HI
110(5)
6.10.4 Real-Time, Time-Average HI
115(1)
6.11 Fringe Formation and Measurement of Displacement Vector
115(1)
6.12 Loading of the Object
116(1)
6.13 Measurement of Very Small Vibration Amplitudes
117(1)
6.14 Measurement of Large Vibration Amplitudes
117(3)
6.14.1 Frequency Modulation of Reference Wave
117(2)
6.14.2 Phase Modulation of Reference Beam
119(1)
6.15 Stroboscopic Illumination/Stroboscopic HI
120(1)
6.16 Special Techniques in Holographic Interferometry
121(6)
6.16.1 Two-Reference-Beam HI
121(2)
6.16.2 Sandwich HI
123(2)
6.16.3 Reflection HI
125(2)
6.17 Extending the Sensitivity of HI
127(2)
6.17.1 Heterodyne HI
127(2)
6.18 Holographic Contouring/Shape Measurement
129(3)
6.18.1 Dual-Wavelength Method
129(2)
6.18.2 Dual-Refractive Index Method
131(1)
6.18.3 Dual-Illumination Method
132(1)
6.19 Holographic Photoelasticity
132(1)
6.20 Digital Holography
132(3)
6.20.1 Recording
132(1)
6.20.2 Reconstruction
133(2)
6.21 Digital Holographic Interferometry
135(1)
Bibliography
136(1)
Additional Reading
137(12)
Chapter 7 Speckle Metrology 149(52)
7.1 The Speckle Phenomenon
149(1)
7.2 Average Speckle Size
149(2)
7.2.1 Objective Speckle Pattern
150(1)
7.2.2 Subjective Speckle Pattern
150(1)
7.3 Superposition of Speckle Patterns
151(1)
7.4 Speckle Pattern and Object Surface Characteristics
152(1)
7.5 Speckle Pattern and Surface Motion
152(3)
7.5.1 Linear Motion in the Plane of the Surface
152(1)
7.5.2 Out-of-Plane Displacement
152(1)
7.5.3 Tilt of the Object
153(2)
7.6 Speckle Photography
155(3)
7.7 Methods of Evaluation
158(3)
7.7.1 Pointwise Filtering
158(2)
7.7.2 Wholefield Filtering
160(1)
7.7.3 Fourier Filtering: Measurement of Out-of-Plane Displacement
161(1)
7.8 Speckle Photography with Vibrating Objects: In-Plane Vibration
161(1)
7.9 Sensitivity of Speckle Photography
162(1)
7.10 Particle Image Velocimetry
162(1)
7.11 White-Light Speckle Photography
162(1)
7.12 Shear Speckle Photography
163(1)
7.13 Speckle Interferometry
164(3)
7.14 Correlation Coefficient in Speckle Interferometry
167(1)
7.15 Out-of-Plane Speckle Interferometer
168(1)
7.16 In-Plane Measurement: Duffy's Method
169(2)
7.17 Filtering
171(2)
7.17.1 Fringe Formation
171(2)
7.18 Out-of-Plane Displacement Measurement
173(1)
7.19 Simultaneous Measurement of Out-of-Plane and In-Plane Displacement Components
174(1)
7.20 Other Possibilities for Aperturing the Lens
175(1)
7.21 Duffy's Arrangement: Enhanced Sensitivity
176(1)
7.22 Speckle Interferometry-Shape Measurement/ Contouring
177(1)
7.23 Speckle Shear Interferometry
177(1)
7.23.1 The Meaning of Shear
177(1)
7.24 Methods of Shearing
178(2)
7.25 Theory of Speckle Shear Interferometry
180(1)
7.26 Fringe Formation
181(2)
7.26.1 The Michelson Interferometer
181(1)
7.26.2 The Apertured Lens Arrangement
182(1)
7.27 Shear Interferometry without Influence of the In-Plane Component
183(1)
7.28 Electronic Speckle Pattern Interferometry
183(4)
7.28.1 Out-of-Plane Displacement Measurement
184(1)
7.28.2 In-Plane Displacement Measurement
185(1)
7.28.3 Vibration Analysis
185(1)
7.28.4 Measurement on Small Objects
186(1)
7.28.5 Shear ESPI Measurement
187(1)
7.29 Contouring in ESPI
187(2)
7.29.1 Change of Direction of Illumination
188(1)
7.29.2 Change of Wavelength
189(1)
7.29.3 Change of Medium Surrounding the Object
189(1)
7.29.4 Tilt of the Object
189(1)
7.30 Special Techniques
189(1)
7.30.1 Use of Retro-Reflective Paint
189(1)
7.31 Spatial Phase-Shifting
190(1)
Bibliography
191(1)
Additional Reading
191(10)
Chapter 8 Photoelasticity 201(38)
8.1 Superposition of Two-Plane Polarized Waves
201(1)
8.2 Linear Polarization
202(1)
8.3 Circular Polarization
203(1)
8.4 Production of Polarized Light
203(4)
8.4.1 Reflection
204(1)
8.4.2 Refraction
204(1)
8.4.3 Double Refraction
204(3)
8.4.3.1 Phase Plates
205(1)
8.4.3.2 Quarter-Wave Plate
206(1)
8.4.3.3 Half-Wave Plate
206(1)
8.4.3.4 Compensators
206(1)
8.4.4 Dichroism
207(1)
8.4.5 Scattering
207(1)
8.5 Malus's Law
207(1)
8.6 The Stress-Optic Law
207(2)
8.7 The Strain-Optic Law
209(1)
8.8 Methods of Analysis
210(6)
8.8.1 Plane Polariscope
210(2)
8.8.2 Circular Polariscope
212(4)
8.9 Evaluation Procedure
216(1)
8.10 Measurement of Fractional Fringe Order
217(3)
8.10.1 Tardy's Method
217(3)
8.11 Phase-Shifting
220(2)
8.11.1 Isoclinics Computation
220(1)
8.11.2 Computation of Isochromatics
221(1)
8.12 Birefringent Coating Method: Reflection Polariscope
222(1)
8.13 Holophotoelasticity
223(6)
8.13.1 Single-Exposure Holophotoelasticity
224(1)
8.13.2 Double-Exposure Holophotoelasticity
225(4)
8.14 Three-Dimensional Photoelasticity
229(1)
8.14.1 The Frozen-Stress Method
229(1)
8.14.2 Scattered-Light Photoelasticity
230(1)
8.15 Examination of the Stressed Model in Scattered Light
230(3)
8.15.1 Unpolarized Incident Light
230(2)
8.15.2 Linearly Polarized Incident Beam
232(1)
Bibliography
233(1)
Additional Reading
234(5)
Chapter 9 The Moire Phenomenon 239(44)
9.1 Introduction
239(1)
9.2 The Moire Fringe Pattern between Two Linear Gratings
239(3)
9.2.1 a not = to but θ = 0
241(1)
9.2.2 a = b but θ not = to 0
241(1)
9.3 The Moire Fringe Pattern between a Linear Grating and a Circular Grating
242(1)
9.4 Moire between Sinusoidal Gratings
243(2)
9.5 Moire between Reference and Deformed Gratings
245(1)
9.6 Moire Pattern with Deformed Sinusoidal Grating
246(2)
9.6.1 Multiplicative Moire Pattern
247(1)
9.6.2 Additive Moire Pattern
247(1)
9.7 Contrast Improvement of the Additive Moire Pattern
248(1)
9.8 Moire Phenomenon for Measurement
248(1)
9.9 Measurement of In-Plane Displacement
248(5)
9.9.1 Reference and Measurement Gratings of Equal Pitch and Aligned Parallel to Each Other
248(1)
9.9.2 Two-Dimensional In-Plane Displacement Measurement
249(2)
9.9.3 High-Sensitivity In-Plane Displacement Measurement
251(2)
9.10 Measurement of Out-of-Plane Component and Contouring
253(14)
9.10.1 The Shadow Moire Method
254(3)
9.10.1.1 Parallel Illumination and Parallel Observation
254(1)
9.10.1.2 Spherical-Wave Illumination and Camera at Finite Distance
255(2)
9.10.2 Automatic Shape Determination
257(1)
9.10.3 Projection Moire
257(3)
9.10.4 Light-Line Projection with TDI Mode of Operation of CCD Camera
260(2)
9.10.5 Coherent Projection Method
262(2)
9.10.5.1 Interference between Two Collimated Beams
262(1)
9.10.5.2 Interference between Two Spherical Waves
263(1)
9.10.6 Measurement of Vibration Amplitudes
264(1)
9.10.7 Reflection Moire Method
265(2)
9.11 Slope Determination for Dynamic Events
267(1)
9.12 Curvature Determination for Dynamic Events
268(1)
9.13 Surface Topography with Reflection Moire Method
269(2)
9.14 Talbot Phenomenon
271(4)
9.14.1 Talbot Effect in Collimated Illumination
272(1)
9.14.2 Cut-Off Distance
273(1)
9.14.3 Talbot Effect in Noncollimated Illumination
273(1)
9.14.4 Talbot Effect for Measurement
274(1)
9.14.4.1 Temperature Measurement
274(1)
9.14.4.2 Measurement of the Focal Length of a Lens and the Long Radius of Curvature of a Surface
275(1)
Bibliography
275(1)
Additional Reading
275(8)
Index 283
Rajpal S. Sirohi is currently the vice chancellor of Amity University. Prior to this, he was the vice chancellor of Barkatullah University and director of the Indian Institute of Technology Delhi. The recipient of many international awards and author of more than 400 papers, Dr. Sirohi is involved with research concerning optical metrology, optical instrumentation, holography, and speckle phenomenon.