Muutke küpsiste eelistusi

Optical Remote Sensing of Ocean Hydrodynamics [Kõva köide]

(IEEE Fellow)
  • Formaat: Hardback, 280 pages, kõrgus x laius: 234x156 mm, kaal: 670 g, 10 Tables, black and white; 26 Illustrations, color; 53 Illustrations, black and white
  • Ilmumisaeg: 15-Mar-2019
  • Kirjastus: CRC Press Inc
  • ISBN-10: 0815360142
  • ISBN-13: 9780815360148
  • Formaat: Hardback, 280 pages, kõrgus x laius: 234x156 mm, kaal: 670 g, 10 Tables, black and white; 26 Illustrations, color; 53 Illustrations, black and white
  • Ilmumisaeg: 15-Mar-2019
  • Kirjastus: CRC Press Inc
  • ISBN-10: 0815360142
  • ISBN-13: 9780815360148
Optical Remote Sensing is one of the main technologies used in sea surface monitoring. Optical Remote Sensing of Ocean Hydrodynamics investigates and demonstrates capabilities of optical remote sensing technology for enhanced observations and detection of ocean environments. It provides extensive knowledge of physical principles and capabilities of optical observations of the oceans at high spatial resolution, 1-4m, and on the observations of surface wave hydrodynamic processes. It also describes the implementation of spectral-statistical and fusion algorithms for analyses of multispectral optical databases and establishes physics-based criteria for detection of complex wave phenomena and hydrodynamic disturbances including assessment and management of optical databases. This book explains the physical principles of high-resolution optical imagery of the ocean surface, discusses for the first time the capabilities of observing hydrodynamic processes and events, and emphasizes the integration of optical measurements and enhanced data analysis. It also covers both the assessment and the interpretation of dynamic multispectral optical databases and includes applications for advanced studies and nonacoustic detection. This book is an invaluable resource for researches, industry professionals, engineers, and students working on cross-disciplinary problems in ocean hydrodynamics, optical remote sensing of the ocean and sea surface remote sensing. Readers in the fields of geosciences and remote sensing, applied physics, oceanography, satellite observation technology, and optical engineering will learn the theory and practice of optical interactions with the ocean.
Preface xi
Author xv
Chapter 1 Introduction 1(18)
1.1 Definition and Objectives
1(2)
1.2 Physics and Techniques of Optical Remote Sensing
3(6)
1.3 Optical Oceanography: State of Science
9(3)
1.4 Optical Data Acquisition and Analysis
12(3)
Bibliography
15(4)
Chapter 2 Ocean Hydrodynamics 19(68)
2.1 Introduction
19(1)
2.2 Elements of Fluid Dynamics
20(7)
2.2.1 Fluid Classification
20(1)
2.2.2 Fluid Flow
20(2)
2.2.3 Basic Equations of Fluid Dynamics
22(1)
2.2.4 Computational Fluid Dynamics
23(1)
2.2.5 Important Results of Fluid Dynamics
24(1)
2.2.6 Notes on the Literature
25(1)
References to Section 2.2
25(2)
2.3 Waves
27(26)
2.3.1 Introduction
27(1)
2.3.2 Surface Waves
28(10)
2.3.2.1 Deterministic Theory
29(1)
2.3.2.2 Stochastic Theory
30(3)
2.3.2.3 Wind-Wave Similarity Concept
33(2)
2.3.2.4 Wave Kinetic Equation
35(3)
2.3.3 Internal Waves
38(5)
2.3.3.1 A Brief History
38(1)
2.3.3.2 Basic Description
38(2)
2.3.3.3 Basic Mechanisms
40(2)
2.3.3.4 Surface Manifestations
42(1)
2.3.3.5 A Concluded Note
42(1)
2.3.4 Tsunami
43(3)
2.3.4.1 Accessibility of Wave Theories to Tsunami
43(2)
2.3.4.2 Tsunami Wave Parameters
45(1)
2.3.4.3 A Concluding Note
45(1)
2.3.5 Notes on the Literature
46(1)
References to Section 2.3
47(6)
2.4 Currents and Circulation
53(5)
2.4.1 Surface Currents
54(1)
2.4.2 Deep Ocean Circulation
55(1)
2.4.3 Ocean Currents from Space
56(1)
References to Section 2.4
57(1)
2.5 Interactions
58(6)
2.5.1 Wave-Wave Interactions
58(2)
2.5.2 Wave-Current Interaction
60(1)
2.5.3 Surface-Internal Wave Interaction
61(2)
References to Section 2.5
63(1)
2.6 Turbulence
64(9)
2.6.1 Introduction
64(1)
2.6.2 Kolmogorov Law
65(1)
2.6.3 Weak Turbulence
66(1)
2.6.4 Strong Turbulence
67(2)
2.6.5 Wake Turbulence (Turbulent Wake)
69(2)
References to Section 2.6
71(2)
2.7 Instabilities
73(2)
References to Section 2.7
74(1)
2.8 Wave Breaking
75(5)
2.8.1 Introduction
75(1)
2.8.2 Hydrodynamic Characterization
76(2)
2.8.3 Spectral Characterization
78(1)
References to Section 2.8
79(1)
2.9 Hydrodynamics of Explosion
80(5)
2.9.1 Basic Characterization
80(1)
2.9.2 Sequence of Events
81(1)
2.9.3 Surface Displacement
81(1)
2.9.4 Bubble Motion
82(1)
2.9.5 Concluded Note
83(1)
References to Section 2.9
84(1)
2.10 Summary
85(2)
Chapter 3 Fundamentals of Ocean Optics 87(46)
3.1 Introduction
87(1)
3.2 Optical Fields and Quantities
88(10)
3.2.1 Maxwell Equations
88(2)
3.2.2 The Wave Equation, the Velocity of Light, and the Propagation Constant
90(1)
3.2.3 From Maxwell Equations to Geometrical Optics
91(2)
3.2.4 Light Propagation in Scattering Media
93(5)
3.3 Radiometry, Photometry, and Quantities
98(2)
3.4 The Radiative Transfer Equation
100(1)
3.5 Optical Properties of Water
101(11)
3.5.1 The Index of Refraction
102(2)
3.5.2 Absorption
104(1)
3.5.3 Scattering
105(2)
3.5.4 Albedo
107(2)
3.5.5 Radiance and Reflectance
109(3)
3.6 Polarization
112(4)
3.6.1 The Polarization Ellipse
112(1)
3.6.2 The Stokes Polarization Parameters
113(2)
3.6.3 The Mueller Matrix
115(1)
3.6.4 Optical Polarimetry and Remote Sensing
116(1)
3.7 Propagation in Atmosphere
116(7)
3.7.1 Elements of Atmospheric Optics
116(3)
3.7.2 Atmospheric Turbulence
119(2)
3.7.3 Imaging through Turbulence
121(2)
3.8 Summary
123(1)
References
124(9)
Chapter 4 Optical Remote Sensing Technologies 133(18)
4.1 Introduction
133(1)
4.2 Optical Payload Classification
134(8)
4.2.1 Aerial Photography
135(1)
4.2.2 Imaging Spectroscopy
136(1)
4.2.3 Multispectral Imagery
136(1)
4.2.4 Hyperspectral Imagery
137(1)
4.2.5 Light Detection and Ranging
138(1)
4.2.6 Laser Raman Spectroscopy
139(1)
4.2.7 Fourier Transform Spectroscopy
139(1)
4.2.8 Spectrometers and Radiometers
140(1)
4.2.9 Thermal Infrared Imagery
140(1)
4.2.10 Other Sensors
141(1)
4.3 Satellite Imaging Capability
142(6)
4.3.1 Wave Phenomena
142(2)
4.3.2 Coral Reefs
144(1)
4.3.3 Bioproductivity
145(1)
4.3.4 Algal Bloom
145(1)
4.3.5 Marine Pollution
146(2)
4.4 Summary
148(1)
Bibliography
149(2)
Chapter 5 Satellite Optical Imagery 151(18)
5.1 Introduction
151(1)
5.2 Brief History
151(3)
5.3 Satellite Characteristics
154(7)
5.3.1 Types of Optical Sensors
154(1)
5.3.2 Earth Coordinate Reference System
155(2)
5.3.3 Orbits and Swaths
157(3)
5.3.4 Resolutions
160(1)
5.3.5 Revisit Time
161(1)
5.4 Image Formation
161(2)
5.5 Quantitative Assessment and Management
163(1)
5.6 Ocean Observation Strategy
164(2)
5.7 Summary
166(1)
References
166(3)
Chapter 6 Methods of Digital Analysis and Interpretation 169(56)
6.1 Introduction
169(1)
6.2 Variogram
170(1)
6.3 Fourier Transform
170(6)
6.3.1 Basic Definitions
171(1)
6.3.2 Fast Fourier Transform
172(2)
6.3.3 Applications in Remote Sensing
174(2)
6.4 Wavelet
176(5)
6.4.1 Basic Definition
177(3)
6.4.2 Applications
180(1)
6.5 Fractal
181(6)
6.5.1 Self-Similarity
182(1)
6.5.2 The Fractal Dimension
182(1)
6.5.3 Multi fractal Analysis
183(2)
6.5.4 Wavelet-Based Fractal Analysis (WFA)
185(1)
6.5.5 Applications
186(1)
6.6 Fusion
187(7)
6.6.1 Average Method (AM)
188(1)
6.6.2 Intensity-Hue-Saturation Method (HIS)
188(1)
6.6.3 Multiplicative Technique (MT)
188(1)
6.6.4 Principal Component Analysis (PCA)
189(1)
6.6.5 Brovey Transform (BT)
189(1)
6.6.6 Frequency Filtering Methods (FFM)
190(1)
6.6.7 Wavelet-Based Fusion (WTF)
190(1)
6.6.8 Pyramid
191(1)
6.6.9 Hybrid Fusion
191(1)
6.6.10 Ehlers Fusion
191(1)
6.6.11 Artificial Neural Network (ANN)
192(1)
6.6.12 Applications
193(1)
6.6.13 Concluding Note
193(1)
6.7 Texture
194(7)
6.7.1 Texture Analysis
195(2)
6.7.1.1 Texture Classification
195(1)
6.7.1.2 Texture Segmentation
195(1)
6.7.1.3 Shape from Texture
196(1)
6.7.1.4 Texture Synthesis
196(1)
6.7.1.5 Compression
197(1)
6.7.2 Texture Models
197(4)
6.7.2.1 Fourier Series
197(1)
6.7.2.2 Markov Random Field Model
197(1)
6.7.2.3 Fractal Models
198(2)
6.7.2.4 Mosaic Models
200(1)
6.7.2.5 Mixture Models
200(1)
6.8 Feature Extraction
201(9)
6.8.1 Binary Thresholding
201(1)
6.8.2 Edge Detection
201(1)
6.8.3 Fourier Transform
202(1)
6.8.4 Gabor Filter
202(1)
6.8.5 Markov Random Field
203(1)
6.8.6 Digital Wavelet Transform
203(1)
6.8.7 Principal Component Analysis
204(1)
6.8.8 Moment-Based Feature Descriptors
204(1)
6.8.9 Singular-Value Decomposition
205(1)
6.8.10 Autocorrelation Function
206(1)
6.8.11 Decorrelation Stretch
206(1)
6.8.12 Co-occurrence Matrix
207(2)
6.8.13 Support Vector Machines
209(1)
6.9 Fisher Vector
210(1)
6.10 Summary
211(1)
References
211(14)
Chapter 7 Advanced Optical Observations 225(38)
7.1 A Brief Historical Survey
225(2)
7.2 Spectral Signatures
227(7)
7.2.1 Introduction. Wave Spectra
227(3)
7.2.2 Enhanced Spectra
230(1)
7.2.3 Signature Classification
231(1)
7.2.4 Summary
232(2)
7.3 Interactions
234(5)
7.3.1 Introductory Remark
234(1)
7.3.2 Diagram Technique
234(2)
7.3.3 Examples
236(3)
7.3.4 Summary
239(1)
7.4 Wave Breaking Environment
239(7)
7.4.1 Introduction
239(1)
7.4.2 Metrics
240(1)
7.4.3 Morphological and Statistical Processing
240(2)
7.4.4 Selected Results
242(4)
7.4.4.1 Histograms and Statistical Distributions
242(1)
7.4.4.2 Fractal Geometry
242(2)
7.4.4.3 Distinguishing Situations and Detecting Differences
244(2)
7.4.5 Summary
246(1)
7.5 Spectral Portrait
246(7)
7.5.1 Introduction
246(1)
7.5.2 Basic Concept
247(1)
7.5.3 Algorithmic Framework
247(3)
7.5.4 Image Fusion
250(2)
7.5.5 Fusion as Detection Tool
252(1)
7.5.6 Summary
253(1)
7.6 Applications for Advanced Studies
253(2)
7.6.1 Turbulent Wake
253(1)
7.6.2 Induced Surface Current
254(1)
7.6.3 Internal Waves
254(1)
7.7 Summary
255(1)
References
255(8)
Chapter 8 Multisensor Concept and Detection 263(8)
8.1 Introduction
263(1)
8.2 Non-Fusion Strategy
264(1)
8.3 Multisensor Data Fusion
265(1)
8.4 A Synergy Flowchart
266(1)
8.5 Summary
267(2)
References
269(2)
Terminology 271(2)
Index 273
Dr. Victor Raizer, physicist and researcher, has more than 30 years of experience in remote sensing and its applications. Over the years he was involved in various airspace programs, field experiments, laboratory, and theoretical investigations. His scientific work focused on optical and microwave observations, modeling, analysis and interpretation of complex data.His expertise includes the development and application of advanced remote sensing technologies for ocean studies and detection purposes.