Preface |
|
xiii | |
Author |
|
xv | |
|
Chapter 1 Fundamental Concepts |
|
|
1 | (22) |
|
|
1 | (3) |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
3 | (1) |
|
1.1.4 Optical Filters with Metal Films |
|
|
3 | (1) |
|
1.2 Electromagnetic Wave Equation |
|
|
4 | (5) |
|
|
9 | (1) |
|
|
10 | (3) |
|
1.5 Electromagnetic Waves Across Dielectric Boundaries |
|
|
13 | (8) |
|
1.5.1 Derivation of the Boundary Conditions |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
15 | (3) |
|
|
18 | (3) |
|
|
21 | (2) |
|
|
21 | (2) |
|
Chapter 2 Optical Thin Film Materials |
|
|
23 | (16) |
|
2.1 Properties of Optical Thin Film Materials |
|
|
23 | (1) |
|
2.2 Dielectric Thin Film Materials |
|
|
24 | (8) |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
27 | (1) |
|
2.2.1.7 Other Oxide Films |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
29 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
31 | (1) |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
33 | (1) |
|
|
33 | (5) |
|
|
33 | (2) |
|
|
35 | (1) |
|
|
35 | (1) |
|
|
35 | (1) |
|
|
35 | (3) |
|
|
38 | (1) |
|
|
38 | (1) |
|
Chapter 3 Single-Layer Antireflection Theory |
|
|
39 | (10) |
|
3.1 Reflection from a Single Dielectric Interface |
|
|
39 | (1) |
|
3.2 Single-Film Antireflection |
|
|
40 | (2) |
|
3.3 Complex Effective Reflectance Index Contours |
|
|
42 | (3) |
|
3.4 Limitations of the Effective Reflectance Index |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
46 | (3) |
|
Chapter 4 Transfer Matrix Method |
|
|
49 | (16) |
|
4.1 Transfer Matrix Method for Normal Incidence |
|
|
49 | (3) |
|
4.2 Including the Effects of Reflection from the Backside of the Substrate |
|
|
52 | (2) |
|
4.3 Example -- Antireflection on Silica Glass |
|
|
54 | (1) |
|
4.4 Film Stacks on Both Sides of the Substrate |
|
|
55 | (1) |
|
4.5 Materials with Complex and Dispersive Refractive Indices |
|
|
56 | (1) |
|
4.6 Calculation of Absorption in Films |
|
|
57 | (1) |
|
4.7 Calculation of the Field Distribution |
|
|
57 | (3) |
|
4.7.1 Example -- Field Distribution in the Single-Layer Antireflection Structure |
|
|
58 | (2) |
|
4.8 Oblique Incidence -- TE (Transverse Electric) |
|
|
60 | (1) |
|
4.9 Oblique Incidence -- TM (Transverse Magnetic) |
|
|
61 | (3) |
|
|
64 | (1) |
|
|
64 | (1) |
|
Chapter 5 Multilayer Antireflection Theory |
|
|
65 | (20) |
|
5.1 Two-Layer Quarter-Wave Antireflection Designs |
|
|
65 | (2) |
|
5.2 Two-Layer Non-Quarter-Wave Antireflection Designs |
|
|
67 | (4) |
|
5.3 Three-Layer Antireflection Design |
|
|
71 | (1) |
|
5.4 Principles of the Three-Layer Design Using the Absentee Layer |
|
|
72 | (4) |
|
|
76 | (3) |
|
5.6 Antireflection on a Substrate That Already Contains Thin Films |
|
|
79 | (2) |
|
5.7 Structured and Gradient-Index Films |
|
|
81 | (2) |
|
|
83 | (2) |
|
|
84 | (1) |
|
Chapter 6 High-Reflection Designs |
|
|
85 | (8) |
|
6.1 Effective Reflectance Index of a Periodic Layer |
|
|
85 | (4) |
|
|
89 | (1) |
|
6.3 High-Reflection Designs with Symmetric Unit Cells |
|
|
89 | (1) |
|
|
89 | (4) |
|
Chapter 7 Herpin Equivalence Principle |
|
|
93 | (18) |
|
|
93 | (1) |
|
|
93 | (3) |
|
|
96 | (3) |
|
7.4 Trilayer Unit Cell with δ2 = 2δ1 |
|
|
99 | (3) |
|
7.5 (H/2LH/2) vs (1/2H1/2) |
|
|
102 | (1) |
|
7.6 Effective Reflectance Index Contour |
|
|
102 | (1) |
|
7.7 Reflection and Transmission at the Reference Wavelength |
|
|
103 | (4) |
|
|
104 | (3) |
|
7.8 Reflection at the Edges of the Stop Band |
|
|
107 | (2) |
|
7.8.1 Higher-Order Absentee Conditions |
|
|
108 | (1) |
|
7.9 Example -- Continued from Section 7.2 |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
110 | (1) |
|
|
111 | (12) |
|
|
111 | (1) |
|
8.2 Equivalent Index of the Passband of a Periodic Stack |
|
|
111 | (3) |
|
8.3 Transition Characteristics |
|
|
114 | (2) |
|
8.4 Numerical Optimization |
|
|
116 | (1) |
|
8.5 Effects of Material Dispersion |
|
|
117 | (1) |
|
8.6 Design Example of a Mid-Infrared Long-Pass Edge Filter |
|
|
118 | (3) |
|
|
121 | (2) |
|
|
122 | (1) |
|
Chapter 9 Line-Pass Filters |
|
|
123 | (14) |
|
|
123 | (6) |
|
9.1.1 Resonant-Cavity Enhancement |
|
|
126 | (3) |
|
|
129 | (1) |
|
9.3 Coupled-Cavity Design |
|
|
130 | (5) |
|
|
135 | (2) |
|
|
135 | (2) |
|
Chapter 10 Bandpass Filters |
|
|
137 | (8) |
|
10.1 Bandpass Filters by Combining Two Edge Filters |
|
|
137 | (2) |
|
10.2 Coupled-Cavity Bandpass Filters |
|
|
139 | (3) |
|
|
142 | (3) |
|
|
143 | (2) |
|
Chapter 11 Thin-Film Designs for Oblique Incidence |
|
|
145 | (16) |
|
11.1 Angle of Incidence on the Spectral Performance of a Filter |
|
|
145 | (1) |
|
11.2 Continuity Equations and Angle of Incidence (TE) |
|
|
146 | (1) |
|
11.3 Reflection from a Single Interface for TE Polarization |
|
|
146 | (1) |
|
11.4 Behavior of nz with Incident Angle |
|
|
147 | (1) |
|
11.5 Single-Layer Antireflection for TE Incidence |
|
|
148 | (1) |
|
11.6 Continuity Equations and Angle of Incidence (TM) |
|
|
148 | (1) |
|
11.7 Reflection from a Single Interface for TM Polarization |
|
|
149 | (1) |
|
11.8 Behavior of nz' with Incident Angle |
|
|
150 | (1) |
|
11.9 Single-Layer Antireflection for TM Incidence |
|
|
151 | (1) |
|
11.10 Effective Reflectance Index Contours |
|
|
152 | (2) |
|
11.11 Oblique Incidence on a Filter Designed for Normal Incidence |
|
|
154 | (1) |
|
11.12 Multilayer Filters Designed for Oblique Incidence |
|
|
155 | (1) |
|
11.13 A Common Misconception |
|
|
156 | (1) |
|
11.14 Thin-Film Polarizing Beam Splitter |
|
|
157 | (2) |
|
|
159 | (2) |
|
|
159 | (2) |
|
Chapter 12 Metal Film Optics |
|
|
161 | (26) |
|
12.1 Optical Properties of Metals |
|
|
161 | (2) |
|
12.2 Transparency of Metals |
|
|
163 | (2) |
|
12.3 Antireflection Designs for Metal Substrates |
|
|
165 | (9) |
|
12.3.1 Using Films with Complex Refractive Indices |
|
|
165 | (5) |
|
12.3.2 Using Films with Real Refractive Indices |
|
|
170 | (1) |
|
12.3.3 Antireflection Using Metal--Insulator--Metal Structures |
|
|
171 | (3) |
|
12.4 Antireflection on Semiconductors |
|
|
174 | (2) |
|
12.5 Bandpass Filters Using Metal Films |
|
|
176 | (9) |
|
12.5.1 Single-Cavity Metal--Dielectric--Metal Bandpass Filter |
|
|
177 | (3) |
|
12.5.1.1 Optical Dispersion of Metals |
|
|
180 | (1) |
|
12.5.1.2 Metal--Dielectric--Metal Cavity Structure Layer Thicknesses |
|
|
180 | (2) |
|
12.5.2 Coupled-Cavity Metal--Dielectric Bandpass Design |
|
|
182 | (3) |
|
|
185 | (2) |
|
|
185 | (2) |
|
Chapter 13 Thin-Film Designs Using Phase Change Materials |
|
|
187 | (18) |
|
|
187 | (1) |
|
13.2 Vanadium Dioxide (VO2) |
|
|
188 | (10) |
|
13.2.1 Optical Properties of Vanadium Dioxide |
|
|
188 | (1) |
|
|
189 | (3) |
|
13.2.3 Resonant-Cavity Structures with a Complex Film at the Center |
|
|
192 | (4) |
|
13.2.4 Resonant-Cavity Structures with VO2 at the Center |
|
|
196 | (2) |
|
|
198 | (7) |
|
13.3.1 Optical Properties of GST |
|
|
198 | (1) |
|
|
199 | (1) |
|
13.3.3 Resonant-Cavity Structures with GST |
|
|
200 | (2) |
|
13.3.4 Multilayer Designs Using GST |
|
|
202 | (1) |
|
|
203 | (2) |
|
Chapter 14 Deposition Methods |
|
|
205 | (20) |
|
|
205 | (1) |
|
14.1.1 Optical Thin-Film Design vs Process Design |
|
|
205 | (1) |
|
14.1.2 Major Categories of Deposition Techniques |
|
|
205 | (1) |
|
|
205 | (10) |
|
14.2.1 Sputter Deposition |
|
|
206 | (2) |
|
14.2.1.1 DC Sputter Deposition |
|
|
208 | (1) |
|
14.2.1.2 RF Sputter Deposition |
|
|
209 | (1) |
|
14.2.1.3 Reactive Sputter Deposition |
|
|
210 | (1) |
|
14.2.1.4 Ion Beam Sputtering |
|
|
210 | (1) |
|
|
211 | (1) |
|
14.2.2.1 Sputter Configurations |
|
|
211 | (1) |
|
14.2.3 Thermal Evaporation |
|
|
212 | (1) |
|
14.2.3.1 Resistively Heated Thermal Evaporation |
|
|
213 | (1) |
|
14.2.3.2 Flash Evaporation |
|
|
214 | (1) |
|
14.2.3.3 Electron-Beam-Heated Thermal Evaporation |
|
|
214 | (1) |
|
14.2.3.4 Reactive Evaporation |
|
|
215 | (1) |
|
14.2.3.5 Ion-Assisted Deposition |
|
|
215 | (1) |
|
14.3 Chemical Vapor Deposition |
|
|
215 | (3) |
|
|
216 | (1) |
|
|
216 | (1) |
|
|
217 | (1) |
|
14.4 Thickness Monitoring and Control |
|
|
218 | (4) |
|
14.4.1 Quartz Crystal Microbalance |
|
|
218 | (2) |
|
14.4.2 Optical Monitoring |
|
|
220 | (2) |
|
|
222 | (3) |
|
|
223 | (2) |
|
Chapter 15 Python Computer Code |
|
|
225 | (12) |
|
15.1 Plane Wave Transfer Matrix Method |
|
|
225 | (6) |
|
15.1.1 Subroutine: tmm.py |
|
|
225 | (1) |
|
15.1.2 TMM Reflection Spectrum with and without Substrate Backside (Figure 4.4 in Chapter 4) |
|
|
226 | (1) |
|
15.1.3 TMM Reflection Spectrum Including Complex and Dispersive Materials (Figure 4.5 in Chapter 4) |
|
|
227 | (1) |
|
15.1.4 Subroutine: tmm_field.py |
|
|
228 | (1) |
|
15.1.5 Field Profile inside Single-Layer Antireflection (Figure 4.6 in Chapter 4) |
|
|
229 | (1) |
|
15.1.6 Coupled-Cavity Line Filter (Figure 9.14 in Chapter 9) |
|
|
229 | (2) |
|
15.2 Effective Reflectance Index Contours |
|
|
231 | (6) |
|
15.2.1 Subroutine: contour.py |
|
|
231 | (1) |
|
15.2.2 Single Quarter-Wave Contour (Figure 3.3 in Chapter 3) |
|
|
231 | (1) |
|
15.2.3 Two Quarter-Wave Contours (Figure 5.1 in Chapter 5) |
|
|
231 | (1) |
|
15.2.4 Subroutine: two_contour_equations.py |
|
|
232 | (1) |
|
15.2.5 Intersection between Two Contours (Figure 5.4a in Chapter 5) |
|
|
232 | (1) |
|
15.2.6 Subroutine: vvequations.py |
|
|
233 | (1) |
|
15.2.7 Roots of the Double-V Design (Figure 5.19a) |
|
|
233 | (1) |
|
15.2.8 Subroutine: complex_ns_equations.py |
|
|
234 | (1) |
|
15.2.9 Solving for the Antireflection Condition with an Existing Film (Figure 5.21) |
|
|
234 | (1) |
|
15.2.10 Solving for the Metal and Dielectric Thicknesses in a Metal--Insulator--Metal (MIM) Structure (Figure 12.18) |
|
|
235 | (2) |
Index |
|
237 | |