Muutke küpsiste eelistusi

Optical Thin Film Design [Kõva köide]

(University of Dayton, OH,USA)
  • Formaat: Hardback, 256 pages, kõrgus x laius: 234x156 mm, kaal: 630 g, 8 Tables, black and white
  • Ilmumisaeg: 14-Aug-2020
  • Kirjastus: CRC Press
  • ISBN-10: 1138390445
  • ISBN-13: 9781138390447
  • Formaat: Hardback, 256 pages, kõrgus x laius: 234x156 mm, kaal: 630 g, 8 Tables, black and white
  • Ilmumisaeg: 14-Aug-2020
  • Kirjastus: CRC Press
  • ISBN-10: 1138390445
  • ISBN-13: 9781138390447
Thin-film coatings are universal on optical components such as displays, lenses, mirrors, cameras, and windows and serve a variety of functions such as antireflection, high reflection, and spectral filtering. Designs can be as simple as a single-layer dielectric for antireflection effects or very complex with hundreds of layers for producing elaborate spectral filtering effects. Starting from basic principles of electromagnetics, design techniques are progressively introduced toward more intricate optical filter designs, numerical optimization techniques, and production methods, as well as emerging areas such as phase change materials and metal film optics. Worked examples, Python computer codes, and instructor problem sets are included.

Key Features:











Starting from the basic principles of electromagnetics, topics are built in a pedagogic manner toward intricate filter designs, numerical optimization and production methods.





Discusses thin-film applications and design from simple single-layer effects to complex several-hundred-layer spectral filtering.





Includes modern topics such as phase change materials and metal film optics.





Includes worked examples, problem sets, and numerical examples with Python codes.
Preface xiii
Author xv
Chapter 1 Fundamental Concepts
1(22)
1.1 Optical Thin Films
1(3)
1.1.1 Antirellection
2(1)
1.1.2 High Reflection
3(1)
1.1.3 Optical Filters
3(1)
1.1.4 Optical Filters with Metal Films
3(1)
1.2 Electromagnetic Wave Equation
4(5)
1.3 Plane Waves
9(1)
1.4 Power Flux
10(3)
1.5 Electromagnetic Waves Across Dielectric Boundaries
13(8)
1.5.1 Derivation of the Boundary Conditions
13(1)
1.5.2 Normal Incidence
14(1)
1.5.3 Oblique Incidence
15(1)
1.5.3.1 TE Incidence
15(3)
1.5.3.2 TM Incidence
18(3)
1.6 Problems
21(2)
Further Reading
21(2)
Chapter 2 Optical Thin Film Materials
23(16)
2.1 Properties of Optical Thin Film Materials
23(1)
2.2 Dielectric Thin Film Materials
24(8)
2.2.1 Oxides
24(1)
2.2.1.1 SiO2
24(1)
2.2.1.2 TiO2
25(1)
2.2.1.3 Al2O3
26(1)
2.2.1.4 Ta2O5
26(1)
2.2.1.5 SiO
26(1)
2.2.1.6 Nb2O5
27(1)
2.2.1.7 Other Oxide Films
28(1)
2.2.2 Fluorides
28(1)
2.2.2.1 MgF2
28(1)
2.2.2.2 CaF2
29(1)
2.2.3 Nitrides
29(1)
2.2.3.1 Si3N4
29(1)
2.2.3.2 TiN
30(1)
2.2.4 Sulfides
31(1)
2.2.4.1 ZnS
31(1)
2.3 Semiconductors
32(1)
2.3.1 Si
32(1)
2.3.2 Ge
33(1)
2.3.3 CdS
33(1)
2.4 Metals
33(5)
2.4.1 Ag
33(2)
2.4.2 Al
35(1)
2.4.3 Au
35(1)
2.4.4 Cu
35(1)
2.4.5 Cr
35(3)
2.5 Problems
38(1)
References
38(1)
Chapter 3 Single-Layer Antireflection Theory
39(10)
3.1 Reflection from a Single Dielectric Interface
39(1)
3.2 Single-Film Antireflection
40(2)
3.3 Complex Effective Reflectance Index Contours
42(3)
3.4 Limitations of the Effective Reflectance Index
45(1)
3.5 Quality Factor
45(1)
3.6 Normalized Frequency
45(1)
3.7 Problems
46(3)
Chapter 4 Transfer Matrix Method
49(16)
4.1 Transfer Matrix Method for Normal Incidence
49(3)
4.2 Including the Effects of Reflection from the Backside of the Substrate
52(2)
4.3 Example -- Antireflection on Silica Glass
54(1)
4.4 Film Stacks on Both Sides of the Substrate
55(1)
4.5 Materials with Complex and Dispersive Refractive Indices
56(1)
4.6 Calculation of Absorption in Films
57(1)
4.7 Calculation of the Field Distribution
57(3)
4.7.1 Example -- Field Distribution in the Single-Layer Antireflection Structure
58(2)
4.8 Oblique Incidence -- TE (Transverse Electric)
60(1)
4.9 Oblique Incidence -- TM (Transverse Magnetic)
61(3)
4.10 Problems
64(1)
References
64(1)
Chapter 5 Multilayer Antireflection Theory
65(20)
5.1 Two-Layer Quarter-Wave Antireflection Designs
65(2)
5.2 Two-Layer Non-Quarter-Wave Antireflection Designs
67(4)
5.3 Three-Layer Antireflection Design
71(1)
5.4 Principles of the Three-Layer Design Using the Absentee Layer
72(4)
5.5 Double-V Designs
76(3)
5.6 Antireflection on a Substrate That Already Contains Thin Films
79(2)
5.7 Structured and Gradient-Index Films
81(2)
5.8 Problems
83(2)
References
84(1)
Chapter 6 High-Reflection Designs
85(8)
6.1 Effective Reflectance Index of a Periodic Layer
85(4)
6.2 Symmetric Unit Cell
89(1)
6.3 High-Reflection Designs with Symmetric Unit Cells
89(1)
6.4 Broadband Reflectors
89(4)
Chapter 7 Herpin Equivalence Principle
93(18)
7.1 Basic Principles
93(1)
7.2 Preview Example
93(3)
7.3 Trilayer Unit Cell
96(3)
7.4 Trilayer Unit Cell with δ2 = 2δ1
99(3)
7.5 (H/2LH/2) vs (1/2H1/2)
102(1)
7.6 Effective Reflectance Index Contour
102(1)
7.7 Reflection and Transmission at the Reference Wavelength
103(4)
7.7.1 Stop Band
104(3)
7.8 Reflection at the Edges of the Stop Band
107(2)
7.8.1 Higher-Order Absentee Conditions
108(1)
7.9 Example -- Continued from Section 7.2
109(1)
7.10 Problems
110(1)
Further Reading
110(1)
Chapter 8 Edge Filters
111(12)
8.1 Basic Concepts
111(1)
8.2 Equivalent Index of the Passband of a Periodic Stack
111(3)
8.3 Transition Characteristics
114(2)
8.4 Numerical Optimization
116(1)
8.5 Effects of Material Dispersion
117(1)
8.6 Design Example of a Mid-Infrared Long-Pass Edge Filter
118(3)
8.7 Problems
121(2)
References
122(1)
Chapter 9 Line-Pass Filters
123(14)
9.1 Single-Cavity Design
123(6)
9.1.1 Resonant-Cavity Enhancement
126(3)
9.2 VCSELs
129(1)
9.3 Coupled-Cavity Design
130(5)
9.4 Problems
135(2)
References
135(2)
Chapter 10 Bandpass Filters
137(8)
10.1 Bandpass Filters by Combining Two Edge Filters
137(2)
10.2 Coupled-Cavity Bandpass Filters
139(3)
10.3 Problems
142(3)
Further Reading
143(2)
Chapter 11 Thin-Film Designs for Oblique Incidence
145(16)
11.1 Angle of Incidence on the Spectral Performance of a Filter
145(1)
11.2 Continuity Equations and Angle of Incidence (TE)
146(1)
11.3 Reflection from a Single Interface for TE Polarization
146(1)
11.4 Behavior of nz with Incident Angle
147(1)
11.5 Single-Layer Antireflection for TE Incidence
148(1)
11.6 Continuity Equations and Angle of Incidence (TM)
148(1)
11.7 Reflection from a Single Interface for TM Polarization
149(1)
11.8 Behavior of nz' with Incident Angle
150(1)
11.9 Single-Layer Antireflection for TM Incidence
151(1)
11.10 Effective Reflectance Index Contours
152(2)
11.11 Oblique Incidence on a Filter Designed for Normal Incidence
154(1)
11.12 Multilayer Filters Designed for Oblique Incidence
155(1)
11.13 A Common Misconception
156(1)
11.14 Thin-Film Polarizing Beam Splitter
157(2)
11.15 Problems
159(2)
References
159(2)
Chapter 12 Metal Film Optics
161(26)
12.1 Optical Properties of Metals
161(2)
12.2 Transparency of Metals
163(2)
12.3 Antireflection Designs for Metal Substrates
165(9)
12.3.1 Using Films with Complex Refractive Indices
165(5)
12.3.2 Using Films with Real Refractive Indices
170(1)
12.3.3 Antireflection Using Metal--Insulator--Metal Structures
171(3)
12.4 Antireflection on Semiconductors
174(2)
12.5 Bandpass Filters Using Metal Films
176(9)
12.5.1 Single-Cavity Metal--Dielectric--Metal Bandpass Filter
177(3)
12.5.1.1 Optical Dispersion of Metals
180(1)
12.5.1.2 Metal--Dielectric--Metal Cavity Structure Layer Thicknesses
180(2)
12.5.2 Coupled-Cavity Metal--Dielectric Bandpass Design
182(3)
12.6 Problems
185(2)
Further Reading
185(2)
Chapter 13 Thin-Film Designs Using Phase Change Materials
187(18)
13.1 Introduction
187(1)
13.2 Vanadium Dioxide (VO2)
188(10)
13.2.1 Optical Properties of Vanadium Dioxide
188(1)
13.2.2 Antireflection
189(3)
13.2.3 Resonant-Cavity Structures with a Complex Film at the Center
192(4)
13.2.4 Resonant-Cavity Structures with VO2 at the Center
196(2)
13.3 Ge2Sb2Te5 (GST)
198(7)
13.3.1 Optical Properties of GST
198(1)
13.3.2 Antireflection
199(1)
13.3.3 Resonant-Cavity Structures with GST
200(2)
13.3.4 Multilayer Designs Using GST
202(1)
Further Reading
203(2)
Chapter 14 Deposition Methods
205(20)
14.1 Introduction
205(1)
14.1.1 Optical Thin-Film Design vs Process Design
205(1)
14.1.2 Major Categories of Deposition Techniques
205(1)
14.2 PVD
205(10)
14.2.1 Sputter Deposition
206(2)
14.2.1.1 DC Sputter Deposition
208(1)
14.2.1.2 RF Sputter Deposition
209(1)
14.2.1.3 Reactive Sputter Deposition
210(1)
14.2.1.4 Ion Beam Sputtering
210(1)
14.2.2 PLD
211(1)
14.2.2.1 Sputter Configurations
211(1)
14.2.3 Thermal Evaporation
212(1)
14.2.3.1 Resistively Heated Thermal Evaporation
213(1)
14.2.3.2 Flash Evaporation
214(1)
14.2.3.3 Electron-Beam-Heated Thermal Evaporation
214(1)
14.2.3.4 Reactive Evaporation
215(1)
14.2.3.5 Ion-Assisted Deposition
215(1)
14.3 Chemical Vapor Deposition
215(3)
14.3.1 LPCVD
216(1)
14.3.2 PECVD
216(1)
14.3.3 ALD
217(1)
14.4 Thickness Monitoring and Control
218(4)
14.4.1 Quartz Crystal Microbalance
218(2)
14.4.2 Optical Monitoring
220(2)
14.5 Thin-Film Stress
222(3)
Further Reading
223(2)
Chapter 15 Python Computer Code
225(12)
15.1 Plane Wave Transfer Matrix Method
225(6)
15.1.1 Subroutine: tmm.py
225(1)
15.1.2 TMM Reflection Spectrum with and without Substrate Backside (Figure 4.4 in
Chapter 4)
226(1)
15.1.3 TMM Reflection Spectrum Including Complex and Dispersive Materials (Figure 4.5 in
Chapter 4)
227(1)
15.1.4 Subroutine: tmm_field.py
228(1)
15.1.5 Field Profile inside Single-Layer Antireflection (Figure 4.6 in
Chapter 4)
229(1)
15.1.6 Coupled-Cavity Line Filter (Figure 9.14 in
Chapter 9)
229(2)
15.2 Effective Reflectance Index Contours
231(6)
15.2.1 Subroutine: contour.py
231(1)
15.2.2 Single Quarter-Wave Contour (Figure 3.3 in
Chapter 3)
231(1)
15.2.3 Two Quarter-Wave Contours (Figure 5.1 in
Chapter 5)
231(1)
15.2.4 Subroutine: two_contour_equations.py
232(1)
15.2.5 Intersection between Two Contours (Figure 5.4a in
Chapter 5)
232(1)
15.2.6 Subroutine: vvequations.py
233(1)
15.2.7 Roots of the Double-V Design (Figure 5.19a)
233(1)
15.2.8 Subroutine: complex_ns_equations.py
234(1)
15.2.9 Solving for the Antireflection Condition with an Existing Film (Figure 5.21)
234(1)
15.2.10 Solving for the Metal and Dielectric Thicknesses in a Metal--Insulator--Metal (MIM) Structure (Figure 12.18)
235(2)
Index 237
Dr. Andrew Sarangan is a Full Professor in the Electro-Optics & Photonics Department at the University of Dayton, Ohio. He received his BASc and PhD degrees from the University of Waterloo in Canada in 1991 and 1997 respectively. His current research areas are in infrared photodetector technologies, optical thin films, nanofabrication, nano-structured thin films and computational electromagnetics. At Dayton he created a state-of-the-art and comprehensive nano-fabrication laboratory for thin films, lithography and semiconductor processing, as a single-PI effort from externally funded research. His research has been sponsored by the National Science Foundation, various agencies of the Department of Defense and the Air Force Research Laboratory.