Muutke küpsiste eelistusi

Optics of Diffractive and Gradient-Index Elements and Systems [Kõva köide]

  • Formaat: Hardback, 391 pages, kaal: 720 g, Illustrations, ports.
  • Sari: Press Monographs
  • Ilmumisaeg: 01-Jan-1997
  • Kirjastus: SPIE Press
  • ISBN-10: 081942451X
  • ISBN-13: 9780819424518
Teised raamatud teemal:
  • Formaat: Hardback, 391 pages, kaal: 720 g, Illustrations, ports.
  • Sari: Press Monographs
  • Ilmumisaeg: 01-Jan-1997
  • Kirjastus: SPIE Press
  • ISBN-10: 081942451X
  • ISBN-13: 9780819424518
Teised raamatud teemal:
For readers who already have a solid foundation in optics, explores some of the problems and solutions of applying the two types of light-processing material in optical systems. Discusses the physical principles, calculating paraxial and aberration, evaluating image quality for both individual elements and optical systems, possibilities for correcting aberrations, and principles for designing totally diffractive and hybrid systems. Annotation c. by Book News, Inc., Portland, Or.
Preface ix(12)
Notation of Principal Variables xix
1 Introduction to Theory of Diffractive Elements
1(35)
1.1 Diffraction by infinitely thin structures
3(7)
1.2 Focusing properties of diffractive lenses
10(12)
1.3 Aberrations of infinitely thin optical elements
22(12)
1.3.1 Aspheric refracting surface
26(4)
1.3.2 Diffractive lens on an aspheric surface
30(4)
References
34(2)
2 Introduction to Theory of Gradient-Index Elements
36(19)
2.1 Ray paths in inhomogeneous media
36(5)
2.2 Focusing properties of inhomogeneous media
41(7)
2.3 Paraxial optics of gradient-index singlets
48(5)
References
53(2)
3 Ray Tracing and Estimation of Image Quality
55(51)
3.1 Ray Tracing through hybrid optical systems
56(25)
3.1.1 Tracing in homogeneous and inhomogeneous media
56(9)
3.1.2 Intersection with a predetermined surface
65(5)
3.1.3 Deflection by an infinitely thin optical element
70(6)
3.1.4 Tracing through a diffractive corrector
76(5)
3.2 Criteria of image evaluation in optical system design
81(23)
3.2.1 Main functions and numerical criteria of point image evaluation
81(10)
3.2.2 Image quality criteria based on a spot diagram
91(6)
3.2.3 Analysis of correlation statistics of numerical criteria
97(7)
References
104(2)
4 Aberration Calculations of Homogeneous Optical Systems
106(40)
4.1 Transformation of aberrations of propagating aberrated spherical waves
107(16)
4.2 Calculation of wave-front aberrations
123(13)
4.3 First-order chromatic aberrations
136(8)
References
144(2)
5 Aberration Calculations of Inhomogeneous Optical Systems
146(43)
5.1 First-order chromatic aberrations
146(9)
5.2 Third-order monochromatic aberrations
155(9)
5.3 Higher-order aberrations. Pseudorays
164(23)
5.3.1 Definitions and basic principles
164(3)
5.3.2 A pseudoray in a medium confined by two spherical surfaces
167(15)
5.3.3 Pseudoray deflection by an infinitely thin optical element
182(5)
References
187(2)
6 Correction Capabilities of Optical Elements of Different Types
189(43)
6.1 Diffractive lens
189(17)
6.1.1 Monochromatic aberrations
189(6)
6.1.2 Effect of substrate
195(7)
6.1.3 Chromatic variation of spherical aberration
202(4)
6.2 Homogeneous refractive lens
206(17)
6.2.1 Refracting surface
206(5)
6.2.2 Thick lens
211(9)
6.2.3 Thin lens
220(3)
6.3 Gradient-index lens
223(7)
6.3.1 Wood lens
223(2)
6.3.2 Lens with spherical surfaces
225(5)
References
230(2)
7 High-Resolution Objectives Using Diffractive Lenses
232(56)
7.1 Diffractive doublet
232(18)
7.1.1 Third-order aberration-free design
233(7)
7.1.2 Effect of substrates
240(7)
7.1.3 Design with unit magnification
247(3)
7.2 Front-to-back proportional and symmetric triplets
250(10)
7.3 Shortened triplet
260(10)
7.4 Triplet containing two aspherics
270(9)
7.5 Fourier-transform objective
279(8)
References
287(1)
8 Homogeneous Hybrid Optical Systems
288(42)
8.1 Aberration properties of simple objectives
289(16)
8.1.1 Refractive-diffractive doublet
289(6)
8.1.2 Front-to-back symmetric triplets
295(5)
8.1.3 Correction of chromatic aberrations
300(5)
8.2 Compensated refracting surface
305(12)
8.2.1 Principles and analysis of aberrations
305(5)
8.2.2 Imaging objectives using compensated surfaces
310(7)
8.3 Objectives for optical disk systems
317(11)
References
328(2)
9 Hybrid Objectives Using Gradient-Index Lenses
330(31)
9.1 Doublet including Smith lens
331(4)
9.2 Design including a diffractive aspheric
335(9)
9.3 Gradient-diffractive doublet
344(7)
9.4 Front-to-back symmetric triplet
351(8)
References
359(2)
10 Design of Diffractive Lenses from the Point of View of Their Fabrication
361(28)
10.1 Diffraction efficiency of surface-relief elements
362(10)
10.1.1 Sawtooth relief (kinoform)
362(5)
10.1.2 Stairstep relief
367(5)
10.2 Design of a planar structure
372(4)
10.3 Effects of manufacturing inaccuracies
376(10)
References
386(3)
Index 389