Muutke küpsiste eelistusi

Optimal Spacecraft Trajectories [Kõva köide]

(Professor Emeritus of Aerospace Engineering, University of Illinois)
  • Formaat: Hardback, 152 pages, kõrgus x laius x paksus: 237x164x15 mm, kaal: 410 g
  • Ilmumisaeg: 21-Dec-2017
  • Kirjastus: Oxford University Press
  • ISBN-10: 019881108X
  • ISBN-13: 9780198811084
Teised raamatud teemal:
  • Formaat: Hardback, 152 pages, kõrgus x laius x paksus: 237x164x15 mm, kaal: 410 g
  • Ilmumisaeg: 21-Dec-2017
  • Kirjastus: Oxford University Press
  • ISBN-10: 019881108X
  • ISBN-13: 9780198811084
Teised raamatud teemal:
This graduate textbook on optimal spacecraft trajectories demonstrates the theory and applications of using the minimum amount of propellant possible to reach a target destination. The author aims to produce the only comprehensive treatment of various aspects of this topic. It includes problems at the ends of the chapters and some of the appendices. But it is also suitable as a scholarly reference book as it includes recent research from the author and his colleagues.
Introduction 1(3)
1 Parameter Optimization
4(9)
1.1 Unconstrained parameter optimization
4(2)
1.2 Parameter optimization with equality constraints
6(3)
1.2.1 Lagrange multipliers
6(3)
1.3 Parameter optimization with an inequality constraint
9(4)
Problems
11(1)
Reference
12(1)
2 Rocket Trajectories
13(6)
2.1 Equations of motion
13(1)
2.2 High-thrust and low-thrust engines
14(1)
2.3 Constant-specific-impulse (CSI) and variable-specific-impulse (VSI) engines
14(5)
Problems
18(1)
Reference
18(1)
3 Optimal Control Theory
19(13)
3.1 Equation of motion and cost functional
19(2)
3.2 General problem
21(6)
3.3 Terminal constraints and unspecified final time
27(2)
3.4 Pontryagin minimum principle
29(3)
Problems
30(1)
References
31(1)
4 Optimal Trajectories
32(10)
4.1 Optimal constant-specific-impulse trajectory
32(4)
4.2 Optimal impulsive trajectory
36(1)
4.3 Optimal variable-specific-impulse trajectory
37(2)
4.4 Solution to the primer vector equation
39(1)
4.5 A vector constant
40(2)
Problems
40(1)
References
41(1)
5 Improving a Nonoptimal Impulsive Trajectory
42(24)
5.1 Fixed-time-impulsive rendezvous
42(18)
5.1.1 Criterion for a terminal coast
44(8)
5.1.2 Criterion for addition of a midcourse impulse
52(4)
5.1.3 Iteration on the midcourse impulse position and time
56(4)
5.2 Fixed-time impulsive orbit transfer
60(6)
5.2.1 Circular terminal orbits
62(2)
Problems
64(1)
References
65(1)
6 Continuous-Thrust Trajectories
66(7)
6.1 Quasi-circular orbit transfer
66(3)
6.2 The effects of non-constant mass
69(1)
6.3 Optimal quasi-circular orbit transfer
69(4)
Problems
72(1)
References
72(1)
7 Cooperative Rendezvous
73(11)
7.1 Continuous thrust cooperative rendezvous
73(5)
7.1.1 The CSI case
74(3)
7.1.2 The VSI case
77(1)
7.2 Impulsive cooperative terminal maneuvers
78(6)
Problems
82(1)
References
83(1)
8 Second-Order Conditions
84(17)
8.1 Second-order NC and SC for a parameter optimization
84(1)
8.2 The second variation in an optimal control problem
85(3)
8.3 Review of the linear-quadratic problem
88(3)
8.4 Second-order NC and SC for an optimal control problem
91(1)
8.5 Conjugate point test procedure
91(3)
8.5.1 Single terminal constraint (q = 0)
92(1)
8.5.2 Multiple terminal constraints (q > 0)
93(1)
8.6 Computational procedure
94(7)
Problems
98(1)
References
98(3)
A Lagrange Multiplier Interpretation
101(2)
B Hohmann Transfer
103(8)
B.1 Constrained parameter optimization
103(3)
B.2 Simple proof of global optimality
106(5)
Problems
109(1)
References
110(1)
C Optimal Impulsive Linear Systems
111(7)
C.1 Sufficient conditions for an optimal solution
111(2)
C.2 Maximum number of impulses
113(5)
References
117(1)
D Linear System Theory
118(6)
D.1 Homogeneous case
118(4)
D.2 Inhomogeneous case
122(2)
Problems
123(1)
Reference
123(1)
E Maximum Range Using Continuous Thrust in a Uniform Gravitational Field
124(5)
Reference
128(1)
F Quadratic Forms
129(2)
F.1 Matrix symmetry
129(1)
F.2 The derivative of a quadratic form
130(1)
G Simple Conjugate Point Example
131(6)
Reference
135(2)
Index 137
John Prussing is Professor Emeritus of Aerospace Engineering at the University of Illnois at Urbana-Champaign. He holds a SB, SM and a ScD in 1967 in aerospace engineering all from MIT, and served as professor of aerospace engineering between 1969 and 2007, and continues to teach part time, including short courses at NASA. He has published over 80 articles and has authored/co-authored three books.