Introduction |
|
1 | (3) |
|
|
4 | (9) |
|
1.1 Unconstrained parameter optimization |
|
|
4 | (2) |
|
1.2 Parameter optimization with equality constraints |
|
|
6 | (3) |
|
1.2.1 Lagrange multipliers |
|
|
6 | (3) |
|
1.3 Parameter optimization with an inequality constraint |
|
|
9 | (4) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (6) |
|
|
13 | (1) |
|
2.2 High-thrust and low-thrust engines |
|
|
14 | (1) |
|
2.3 Constant-specific-impulse (CSI) and variable-specific-impulse (VSI) engines |
|
|
14 | (5) |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
19 | (13) |
|
3.1 Equation of motion and cost functional |
|
|
19 | (2) |
|
|
21 | (6) |
|
3.3 Terminal constraints and unspecified final time |
|
|
27 | (2) |
|
3.4 Pontryagin minimum principle |
|
|
29 | (3) |
|
|
30 | (1) |
|
|
31 | (1) |
|
|
32 | (10) |
|
4.1 Optimal constant-specific-impulse trajectory |
|
|
32 | (4) |
|
4.2 Optimal impulsive trajectory |
|
|
36 | (1) |
|
4.3 Optimal variable-specific-impulse trajectory |
|
|
37 | (2) |
|
4.4 Solution to the primer vector equation |
|
|
39 | (1) |
|
|
40 | (2) |
|
|
40 | (1) |
|
|
41 | (1) |
|
5 Improving a Nonoptimal Impulsive Trajectory |
|
|
42 | (24) |
|
5.1 Fixed-time-impulsive rendezvous |
|
|
42 | (18) |
|
5.1.1 Criterion for a terminal coast |
|
|
44 | (8) |
|
5.1.2 Criterion for addition of a midcourse impulse |
|
|
52 | (4) |
|
5.1.3 Iteration on the midcourse impulse position and time |
|
|
56 | (4) |
|
5.2 Fixed-time impulsive orbit transfer |
|
|
60 | (6) |
|
5.2.1 Circular terminal orbits |
|
|
62 | (2) |
|
|
64 | (1) |
|
|
65 | (1) |
|
6 Continuous-Thrust Trajectories |
|
|
66 | (7) |
|
6.1 Quasi-circular orbit transfer |
|
|
66 | (3) |
|
6.2 The effects of non-constant mass |
|
|
69 | (1) |
|
6.3 Optimal quasi-circular orbit transfer |
|
|
69 | (4) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
73 | (11) |
|
7.1 Continuous thrust cooperative rendezvous |
|
|
73 | (5) |
|
|
74 | (3) |
|
|
77 | (1) |
|
7.2 Impulsive cooperative terminal maneuvers |
|
|
78 | (6) |
|
|
82 | (1) |
|
|
83 | (1) |
|
8 Second-Order Conditions |
|
|
84 | (17) |
|
8.1 Second-order NC and SC for a parameter optimization |
|
|
84 | (1) |
|
8.2 The second variation in an optimal control problem |
|
|
85 | (3) |
|
8.3 Review of the linear-quadratic problem |
|
|
88 | (3) |
|
8.4 Second-order NC and SC for an optimal control problem |
|
|
91 | (1) |
|
8.5 Conjugate point test procedure |
|
|
91 | (3) |
|
8.5.1 Single terminal constraint (q = 0) |
|
|
92 | (1) |
|
8.5.2 Multiple terminal constraints (q > 0) |
|
|
93 | (1) |
|
8.6 Computational procedure |
|
|
94 | (7) |
|
|
98 | (1) |
|
|
98 | (3) |
|
A Lagrange Multiplier Interpretation |
|
|
101 | (2) |
|
|
103 | (8) |
|
B.1 Constrained parameter optimization |
|
|
103 | (3) |
|
B.2 Simple proof of global optimality |
|
|
106 | (5) |
|
|
109 | (1) |
|
|
110 | (1) |
|
C Optimal Impulsive Linear Systems |
|
|
111 | (7) |
|
C.1 Sufficient conditions for an optimal solution |
|
|
111 | (2) |
|
C.2 Maximum number of impulses |
|
|
113 | (5) |
|
|
117 | (1) |
|
|
118 | (6) |
|
|
118 | (4) |
|
|
122 | (2) |
|
|
123 | (1) |
|
|
123 | (1) |
|
E Maximum Range Using Continuous Thrust in a Uniform Gravitational Field |
|
|
124 | (5) |
|
|
128 | (1) |
|
|
129 | (2) |
|
|
129 | (1) |
|
F.2 The derivative of a quadratic form |
|
|
130 | (1) |
|
G Simple Conjugate Point Example |
|
|
131 | (6) |
|
|
135 | (2) |
Index |
|
137 | |