Muutke küpsiste eelistusi

Optimizing Engineering Designs [Kõva köide]

  • Formaat: Hardback, 224 pages, kõrgus x laius: 229x157 mm, kaal: 4500 g, bibliography
  • Ilmumisaeg: 30-Mar-1993
  • Kirjastus: McGraw-Hill Publishing Co.
  • ISBN-10: 0077077806
  • ISBN-13: 9780077077808
  • Kõva köide
  • Hind: 58,59 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
Optimizing Engineering Designs
  • Formaat: Hardback, 224 pages, kõrgus x laius: 229x157 mm, kaal: 4500 g, bibliography
  • Ilmumisaeg: 30-Mar-1993
  • Kirjastus: McGraw-Hill Publishing Co.
  • ISBN-10: 0077077806
  • ISBN-13: 9780077077808
"Optimizing Engineering Designs" concerns the experimental stages in the design or development of new products. Experiments often constitute the most time-consuming phase within the schedule of a product's development. Shortening this phase by means of exact planning and reliable results can lead to an enormous advantage over competition. This text demonstrates the setting up of cost effective and accurate experiments, whether on paper/computer, or using a prototype. Taguchi methods have been dominant, but a number of alternatives are now offered, and are gaining popularity. Time series analysis, Taguchi, Shanin and genetic algorithm are the four major techniques covered. There is also a major chapter introducing other methods and their benefits and drawbacks.
Criteria for use of methods for design of experiments; applying design
of experiment methods depending on certain situations; problem analysis,
empiric parameter reduction; experiment design according to Shanin; variance
analysis as an aid for solving problems; introduction into the design of
experiment according to Taguchi; robust design; simultaneous optimization of
product and manufacture process; parameter design according to Taguchi; time
series analysis; Plackett-Burman or screening design; response surface
methodology - RSM; genetic algorithms.