Preface |
|
ix | |
Introduction |
|
xi | |
|
1 Spaces, Laws and Limits |
|
|
1 | (28) |
|
|
1 | (2) |
|
1.2 Measurable Spaces, Random Variables and Laws |
|
|
3 | (12) |
|
|
3 | (1) |
|
1.2.2 Measurable functions |
|
|
4 | (1) |
|
1.2.3 Atoms and separable fields |
|
|
5 | (1) |
|
1.2.4 The case of real-valued random variables |
|
|
5 | (1) |
|
1.2.5 Monotone class theorem |
|
|
6 | (1) |
|
1.2.6 Probability and expectation |
|
|
7 | (2) |
|
1.2.6.1 Convergence of random variables |
|
|
9 | (1) |
|
|
9 | (1) |
|
1.2.6.3 Uniform integrability |
|
|
10 | (1) |
|
1.2.6.4 Completion of probability spaces |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.2.6.6 Conditional expectation |
|
|
12 | (3) |
|
|
15 | (14) |
|
1.3.1 Paving and analytic sets |
|
|
15 | (2) |
|
|
17 | (2) |
|
1.3.3 Lusin and Souslin spaces |
|
|
19 | (2) |
|
1.3.3.1 Souslin-Lusin Theorem |
|
|
21 | (1) |
|
1.3.4 Capacities and Choquet's Theorem |
|
|
21 | (3) |
|
1.3.4.1 Constructing capacities |
|
|
24 | (2) |
|
1.3.5 Theorem of cross-section |
|
|
26 | (3) |
|
|
29 | (60) |
|
|
29 | (5) |
|
|
31 | (1) |
|
|
32 | (2) |
|
2.2 Processes on Filtrations |
|
|
34 | (2) |
|
|
34 | (1) |
|
2.2.2 Progressive measurability |
|
|
35 | (1) |
|
|
36 | (23) |
|
2.3.1 Processes on dense sets |
|
|
37 | (2) |
|
2.3.2 Upcrossings and downcrossings |
|
|
39 | (3) |
|
|
42 | (3) |
|
2.3.3.1 Doob's separability theorems |
|
|
45 | (2) |
|
2.3.4 Progressive processes of random sets |
|
|
47 | (2) |
|
|
49 | (5) |
|
|
54 | (5) |
|
|
59 | (27) |
|
|
60 | (3) |
|
2.4.2 Basic properties of stopping times |
|
|
63 | (3) |
|
2.4.3 Stochastic intervals |
|
|
66 | (1) |
|
2.4.4 Optional and predictable er-fields |
|
|
66 | (5) |
|
2.4.5 Predictable stopping times |
|
|
71 | (6) |
|
2.4.6 Classification of stopping times |
|
|
77 | (2) |
|
2.4.7 Quasi-left-continuous nitrations |
|
|
79 | (1) |
|
2.4.8 Optional and predictable cross-sections |
|
|
80 | (6) |
|
2.5 Optional and Predictable Processes |
|
|
86 | (3) |
|
|
89 | (50) |
|
3.1 Discrete Parameter Martingales |
|
|
89 | (20) |
|
|
90 | (1) |
|
3.1.2 Right and left closed supermartingales |
|
|
91 | (1) |
|
3.1.3 Doob's stopping theorem |
|
|
92 | (2) |
|
3.1.3.1 Extension to unbounded stopping times |
|
|
94 | (3) |
|
3.1.4 Fundamental inequalities |
|
|
97 | (1) |
|
|
97 | (2) |
|
|
99 | (1) |
|
3.1.4.3 Martingales upcrossings and downcrossings |
|
|
100 | (2) |
|
3.1.5 Convergence and decomposition theorems |
|
|
102 | (1) |
|
3.1.5.1 Almost sure convergence of supermartingales |
|
|
103 | (1) |
|
3.1.5.2 Uniform integrability and martingale convergence |
|
|
104 | (1) |
|
3.1.5.3 Riesz decompositions of supermartingales |
|
|
105 | (2) |
|
3.1.5.4 Krickeberg decomposition of martingales |
|
|
107 | (1) |
|
3.1.6 Some applications of convergence theorems |
|
|
108 | (1) |
|
3.2 Continuous Parameter Martingales |
|
|
109 | (30) |
|
3.2.1 Supermartingales on countable sets |
|
|
109 | (1) |
|
3.2.1.1 Fundamental inequalities |
|
|
110 | (1) |
|
3.2.1.2 Existence of right and left limits |
|
|
111 | (3) |
|
3.2.2 Right-continuous supermartingale |
|
|
114 | (3) |
|
3.2.3 Projections theorems |
|
|
117 | (10) |
|
3.2.4 Decomposition of supermartingales |
|
|
127 | (1) |
|
3.2.4.1 Functional analytic decomposition theorem |
|
|
127 | (4) |
|
3.2.4.2 Extension to non-positive functionals |
|
|
131 | (1) |
|
3.2.4.3 Decomposition of positive supermartingale of class D |
|
|
132 | (4) |
|
3.2.4.4 The general case of Doob decomposition |
|
|
136 | (3) |
|
4 Strong Supermartingales |
|
|
139 | (20) |
|
|
139 | (4) |
|
|
143 | (6) |
|
|
149 | (5) |
|
4.4 Mertens Decomposition |
|
|
154 | (1) |
|
|
155 | (4) |
|
|
159 | (42) |
|
|
159 | (4) |
|
5.2 Existence and Uniqueness |
|
|
163 | (3) |
|
5.3 Increasing and Finite Variation Processes |
|
|
166 | (5) |
|
5.3.1 Integration with respect to increasing and finite variation processes |
|
|
167 | (2) |
|
|
169 | (2) |
|
5.4 Decomposition Results |
|
|
171 | (13) |
|
5.4.1 Decomposition of elementary processes |
|
|
172 | (5) |
|
5.4.2 Decomposition of optional martingales |
|
|
177 | (7) |
|
|
184 | (5) |
|
5.5.1 Predictable and optional |
|
|
184 | (3) |
|
5.5.2 Kunita-Watanabe inequalities |
|
|
187 | (2) |
|
5.6 Optional Stochastic Integral |
|
|
189 | (12) |
|
5.6.1 Integral with respect to square integrable martingales |
|
|
189 | (3) |
|
5.6.2 Integral with respect to martingales with integrable variation |
|
|
192 | (2) |
|
5.6.3 Integration with respect to local optional martingales |
|
|
194 | (7) |
|
6 Optional Supermartingales Decomposition |
|
|
201 | (14) |
|
|
201 | (1) |
|
|
202 | (2) |
|
6.3 Doob-Meyer-Galchuk Decomposition |
|
|
204 | (11) |
|
6.3.1 Decomposition of DL class |
|
|
214 | (1) |
|
7 Calculus of Optional Semimartingales |
|
|
215 | (28) |
|
7.1 Integral with Respect to Optional Semimartingales |
|
|
215 | (2) |
|
7.2 Formula for Change of Variables |
|
|
217 | (6) |
|
7.3 Stochastic Integrals of Random Measures |
|
|
223 | (6) |
|
7.4 Semimartingales and Their Characteristics |
|
|
229 | (7) |
|
7.4.1 Canonical representation |
|
|
229 | (3) |
|
7.4.2 Component representation |
|
|
232 | (4) |
|
7.5 Uniform Doob-Meyer Decompositions |
|
|
236 | (7) |
|
|
241 | (2) |
|
8 Optional Stochastic Equations |
|
|
243 | (38) |
|
8.1 Linear Equations, Exponentials and Logarithms |
|
|
243 | (9) |
|
8.1.1 Stochastic exponential |
|
|
244 | (3) |
|
8.1.2 Stochastic logarithm |
|
|
247 | (2) |
|
8.1.3 Nonhomogeneous linear equation |
|
|
249 | (2) |
|
|
251 | (1) |
|
8.2 Existence and Uniqueness of Solutions of Optional Stochastic Equations |
|
|
252 | (17) |
|
8.2.1 Stochastic equation with monotonicity condition |
|
|
253 | (2) |
|
8.2.2 Existence and uniqueness results |
|
|
255 | (2) |
|
|
257 | (2) |
|
|
259 | (9) |
|
8.2.3 Remarks and applications |
|
|
268 | (1) |
|
8.3 Comparison of Solutions of Optional Stochastic Equations |
|
|
269 | (12) |
|
|
270 | (9) |
|
8.3.2 Remarks and applications |
|
|
279 | (2) |
|
9 Optional Financial Markets |
|
|
281 | (26) |
|
|
281 | (1) |
|
|
282 | (1) |
|
|
283 | (8) |
|
9.3.1 The case of stochastic exponentials |
|
|
284 | (4) |
|
9.3.2 The case of stochastic logarithms |
|
|
288 | (3) |
|
|
291 | (2) |
|
|
293 | (4) |
|
9.6 Examples of Special Cases |
|
|
297 | (10) |
|
9.6.1 Ladlag jumps diffusion model |
|
|
297 | (1) |
|
9.6.1.1 Computing a local martingale deflator |
|
|
298 | (1) |
|
9.6.1.2 Pricing of a European call option |
|
|
299 | (3) |
|
9.6.1.3 Hedging of a European call option |
|
|
302 | (1) |
|
|
303 | (4) |
|
9.6.3 Dcfaultable bond and a stock |
|
|
307 | (1) |
|
10 Defaultable Markets on t/nusual Space |
|
|
307 | (1) |
|
|
307 | (3) |
|
|
310 | (1) |
|
10.3 Defaultable Cash-Flow |
|
|
311 | (4) |
|
10.3.1 Portfolio with default |
|
|
313 | (2) |
|
10.4 Probability of Default |
|
|
315 | (2) |
|
10.5 Valuation of Defaultable Cash-Flow and Examples |
|
|
317 | (8) |
|
11 Filtering of Optional Semimartingales |
|
|
325 | (42) |
|
11.1 The Filtering Problem |
|
|
325 | (1) |
|
11.2 The Usual Case of Optimal Filtering |
|
|
326 | (32) |
|
|
326 | (9) |
|
11.2.2 Martingales' integral representation |
|
|
335 | (13) |
|
11.2.3 Filtering of cadlag semimartingales |
|
|
348 | (10) |
|
11.3 The t/nusual case of Optimal Filtering |
|
|
358 | (1) |
|
11.3.1 Filtering on unusual stochastic, basis |
|
|
358 | (2) |
|
11.3.2 Filtering on mixed stochastic basis |
|
|
360 | (2) |
|
11.4 Filtering in Finance |
|
|
362 | (5) |
Bibliography |
|
367 | (10) |
Index |
|
377 | |