Muutke küpsiste eelistusi

Opto-Mechanical Systems Design, Third Edition 3rd New edition [Kõva köide]

(Consultant in Optical Engineering, Norwalk, Connecticut, USA)
  • Formaat: Hardback, 864 pages, kõrgus x laius: 254x178 mm, kaal: 1724 g, 111 Halftones, black and white; 100 Tables, black and white; 790 Illustrations, black and white
  • Sari: Optical Science and Engineering
  • Ilmumisaeg: 01-Nov-2005
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1574446991
  • ISBN-13: 9781574446999
Teised raamatud teemal:
  • Kõva köide
  • Hind: 157,15 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 864 pages, kõrgus x laius: 254x178 mm, kaal: 1724 g, 111 Halftones, black and white; 100 Tables, black and white; 790 Illustrations, black and white
  • Sari: Optical Science and Engineering
  • Ilmumisaeg: 01-Nov-2005
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1574446991
  • ISBN-13: 9781574446999
Teised raamatud teemal:
After nearly two decades, Paul Yoder's Opto-Mechanical Systems Design continues to be the reference of choice for professionals fusing optical and mechanical components into advanced, high-performance instruments. Yoder's authoritative systems-oriented coverage and down-to-earth approach fosters the deep-seated knowledge needed to continually push the field to new limits.



Extensively revised and updated, this Third Edition reflects the massive growth and advancement achieved in the field over the past few years. It systematically examines the building blocks for new optical instruments and details new tools and techniques for designing, building, and testing optical systems hardware. The book includes revised, broad-based standards, equations for designing 26 types of prisms and lens, mirror, and prism mounts, state-of-the-art examples of designs for large mirrors and their mounts, and an expanded chapter that consolidates information on the design and mounting of metal mirrors. New sections include special protective coatings, manufacturing techniques, mounting lenses on flexures, and techniques for aligning lenses and lens systems in addition to two new chapters: one on designing and mounting small mirrors, gratings, and pellicles; the other, on analysis methods including damage and failure analysis.

Whether you are designing a high-resolution projector or the most sensitive space telescope, Opto-Mechanical Systems Design, Third Edition supplies the tools you need in a single, concise reference.
The Opto-Mechanical Design Process
Introduction
1(1)
Conceptualization
2(3)
Performance Specifications and Design Constraints
5(7)
Preliminary Design
12(2)
Design Analysis and Computer Modeling
14(7)
Error Budgets and Tolerances
21(6)
Experimental Modeling
27(3)
Finalizing the Design
30(1)
Design Reviews
31(1)
Manufacturing the Instrument
32(1)
Evaluating the End Product
33(1)
Documenting the Design
34(3)
References
34(3)
Environmental Influences
Introduction
37(1)
Parameters of Concern
38(31)
Temperature
39(4)
Pressure
43(1)
Static Strains and Stresses
44(1)
Vibration
45(7)
Shock
52(2)
Humidity
54(1)
Corrosion
54(1)
Contamination
55(4)
Fungus
59(1)
Abrasion and Erosion
60(3)
High-Energy Radiation and Micrometeorites
63(3)
Laser Damage to Optical Components
66(1)
Fundamental Mechanisms
66(1)
Surfaces and Mirrors
67(1)
Materials and Measurements
67(2)
Thin Films
69(1)
Environmental Testing of Optics
69(8)
References
71(6)
Opto-Mechanical Characteristics of Materials
Introduction
77(1)
Materials for Refracting Optics
77(28)
General Considerations
77(2)
Optical Glass
79(10)
Optical Plastics
89(6)
Optical Crystals
95(2)
Alkali and Alkaline Earth Halides
97(3)
Glasses and Other Oxides
100(1)
Semiconductors
100(5)
Chalcogenides
105(1)
Coefficients Related to Optical Material Thermal Behavior
105(1)
Materials for Reflecting Optics
105(10)
Smoothness
105(8)
Stability
113(2)
Rigidity
115(1)
Materials for Mechanical Components
115(13)
Aluminum
116(1)
Alloy 1100
116(2)
Alloy 2024
118(1)
Alloy 6061
118(1)
Alloy 7075
118(1)
Alloy 356
118(1)
Beryllium
118(3)
Copper
121(1)
Alloy C10100
122(1)
Alloy C17200
122(1)
Alloy C360
122(1)
Alloy C260
122(1)
Glidcop™
122(1)
Invar and Super Invar
122(1)
Magnesium
123(1)
Carbon Steel
123(1)
Corrosion-Resistant Steel
123(1)
Titanium
123(1)
Silicon Carbide
124(1)
Composite Materials
124(4)
Adhesives
128(9)
Optical Cements
128(1)
Solvent Loss Cements
129(1)
Thermoplastic Cements
129(1)
Thermosetting Cements
129(1)
Photosetting Cements
130(1)
Physical Characteristics
131(1)
Transmission Characteristics
131(1)
Cementing Optical Surfaces
132(1)
Structural Adhesives
133(1)
Epoxies
134(1)
Urethane Adhesives
134(3)
Cyanoacrylate Adhesives
137(1)
Sealants
137(3)
Special Coatings for Opto-Mechanical Materials
140(3)
Protective Coatings
140(1)
Paints
140(1)
Platings and Anodic Coatings
141(1)
Proprietary Coatings
141(1)
Optical Black Coatings
141(2)
Coatings to Improve Surface Smoothness
143(1)
Nickel
143(1)
Alumiplate®
143(1)
Techniques for Manufacturing Opto-Mechanical Parts
143(14)
Manufacturing Optical Parts
143(3)
Manufacturing Mechanical Parts
146(1)
Machining Methods
146(1)
Casting Methods
147(1)
Forging and Extrusion Methods
147(2)
Fabricating and Curing Composites
149(1)
General Comments Regarding Manufacturing Processes
150(1)
References
151(6)
Mounting Individual Lenses
Introduction
157(1)
Considerations of Centered Optics
157(10)
Cost Impacts of Fabrication Tolerances
167(6)
Lens Weight and Center of Gravity Location
173(5)
Lens Weight Estimation
174(3)
Lens Center of Gravity Location
177(1)
Mounting Individual Low-Precision Lenses
178(5)
Spring Mountings
178(1)
Burnished Cell Mountings
179(1)
Snap Ring Mountings
180(3)
Mountings for Lenses with Curved Rims
183(1)
Mountings Interfacing with Spherical Surfaces
184(18)
General Considerations
184(3)
The Threaded Retaining Ring Mounting
187(5)
Continuous Flange Mounting
192(2)
Multiple Cantilevered Spring Clip Mounting
194(3)
Opto-Mechanical Interface Types
197(1)
Sharp Corner Interface
197(1)
Tangential Interface
197(1)
Toroidal Interface
198(1)
Spherical Interface
198(1)
Interfaces on Bevels
198(4)
Elastomeric Mountings for Lenses
202(2)
Mounting Lenses on Flexures
204(3)
Alignment of the Individual Lens
207(15)
Mounting Plastic Lenses
222(7)
References
226(3)
Mounting Multiple Lenses
Introduction
229(1)
Multielement Spacing Considerations
229(6)
Examples of Lens Assemblies with No Moving Parts
235(10)
Military Telescope Eyepiece
235(2)
Military Telescope Objective
237(1)
Fixed-Focus Relay Lens
237(2)
Aerial Photographic Objective Lens
239(1)
Low-Distortion Projection Lens
240(1)
Motion Picture Projection Lens
241(1)
Collimator Designed for High-Shock Loading
241(2)
Large Astrographic Objective
243(2)
Infrared Sensor Lens
245(1)
Examples of Lens Assemblies Containing Moving Parts
245(14)
Objectives Designed for Mid-IR Applications
245(2)
Internally Focusing Photographic Lenses
247(1)
Binocular Focus Mechanisms
248(4)
Zoom Lenses
252(7)
Lathe Assembly Techniques
259(5)
Microscope Objectives
264(3)
Assemblies Using Plastic Parts
267(3)
Liquid Coupling of Lenses
270(2)
Catadioptric Assemblies
272(10)
Alignment of Multi-Lense Assemblies
282(15)
Alignment of Reflecting Telescope Systems
297(4)
References
298(3)
Mounting Windows and Filters
Introduction
301(1)
Conventional Window Mounts
302(1)
Special Window Mounts
303(7)
Mounts for Shells and Domes
310(5)
Conformal Windows
315(5)
Filter Mounts
320(3)
Windows Subject to a Pressure Differential
323(8)
Survival
323(4)
Optical Performance Degradation
327(2)
References
329(2)
Designing and Mounting Prisms
Introduction
331(1)
Geometric Relationships
331(6)
Refraction and Reflection at Prism Surfaces
331(1)
Aberrations Caused by Prisms and Plates
332(1)
Beam Displacements Caused by Prisms and Plates
332(1)
Tunnel Diagrams
333(3)
Total Internal Reflection
336(1)
Designs for Typical Prisms
337(36)
The Right-Angle Prism
338(1)
The Beam Splitter (or Beam Combiner) Cube Prism
338(1)
The Amici Prism
338(1)
The Porro Prism
339(1)
The Abbe Version of the Porro Prism
339(3)
The Porro Erecting System
342(2)
The Abbe Erecting System
344(1)
The Rhomboid Prism
345(1)
The Dove Prism
346(1)
Double-Dove Prism
346(1)
The Penta Prism
347(1)
The Roof Penta Prism
348(1)
The Amici/Penta and Right-Angle/Roof Penta Erecting Systems
349(1)
The Reversion, Abbe Type A, and Abbe Type B Prisms
349(1)
The Delta Prism
350(2)
The Pechan Prism
352(3)
The Schmidt Prism
355(3)
The 45° Bauernfeind Prism
358(1)
The Frankford Arsenal Prisms Nos. 1 and 2
358(1)
The Leman Prism
359(1)
An Internally Reflecting Axicon Prism
359(1)
The Cube-Corner Prism
359(2)
An Ocular Prism for a Coincidence Rangefinder
361(4)
A Biocular Prism System
365(1)
Dispersing Prisms
366(2)
Thin-Wedge Prism Systems
368(1)
The Thin Wedge
368(1)
The Risley Wedge System
368(2)
The Longitudinally Sliding Wedge
370(1)
A Focus-Adjusting Wedge System
370(1)
Anamorphic Prism Systems
371(2)
Kinematic and Semikinematic Prism Mounting Principles
373(2)
Mounting Prism by Clamping
375(12)
Prism Mounts: Semikinematic
375(9)
Prism Mounts: Nonkinematic
384(3)
Mounting Prisms by Bonding
387(9)
Flexure Mounts for Prisms
396(5)
References
399(2)
Design and Mounting Small, Nonmetallic Mirrors, Gratings, and Pellicles
Introduction
401(1)
General Considerations
402(13)
Mirror Applications
402(1)
Geometric Configurations
402(1)
Reflected Image Orientation
402(3)
Beam Prints on Optical Surfaces
405(3)
Mirror Coatings
408(3)
Ghost Image Formation by Second-Surface Mirrors
411(4)
Semikinematic Mountings for Small Mirrors
415(10)
Mounting Mirrors by Bonding
425(3)
Flexure Mounts for Mirrors
428(5)
Multiple-Mirror Mounts
433(8)
Mountings for Gratings
441(3)
Pellicle Design and Mounting
444(5)
References
446(3)
Lightweight Nonmetallic Mirror Design
Introduction
449(1)
Material Considerations
450(1)
Core Cell Configurations
451(2)
Cast Ribbed Substrates
453(3)
Slotted-Strut and Fused Monolithic Substrates
456(7)
Frit-Bonded Substrates
463(2)
Low-Temperature Bonded Substrates
465(1)
Machined-Core Substrates
466(4)
Contoured-Back Solid Mirror Configurations
470(2)
Thin Face Sheet Mirror Configurations
472(1)
Scaling Relationships for Lightweight Mirrors
473(8)
References
477(4)
Mounting Large, Horizontal-Axis Mirrors
Introduction
481(1)
General Considerations of Gravity Effects
481(1)
V-Type Mounts
482(7)
Multipoint Edge Supports
489(2)
The Ideal Radial Mount
491(1)
Mercury Tube Mounts
492(1)
Strap and Roller-Chain Mounts
493(5)
Push-Pull Mounts
498(1)
Comparison of Dynamic Relaxation and Finite-Element Analysis Techniques
499(4)
References
501(2)
Mounting Large Vertical-Axis Mirrors
Introduction
503(1)
Ring Mounts
503(3)
Air Bag (Bladder) Mounts
506(3)
Multiple-Point Supports
509(9)
Three-Point Mounts
509(3)
Hindle Mounts
512(3)
Counterweighted Mounts
515(1)
Pneumatic/Hydraulic Mounts
516(2)
Metrology Mounts
518(9)
A 36-Point Pneumatic Metrology Mount
519(1)
A 27-Point Hydraulic Metrology Mount
519(1)
A 52-Point Spring Matrix Metrology Mount
520(4)
Lateral Constraints during Polishing
524(1)
References
525(2)
Mounting Large, Variable-Orientation Mirrors
Introduction
527(1)
Mechanical Flotation Mounts
527(7)
Hydraulic/Pneumatic Mounts
534(14)
Historical Background
534(3)
Gemini Telescopes
537(8)
New Multiple Mirror Telescope
545(3)
Center-Mounted Mirrors
548(5)
Mounts for Double-Arch Mirrors
553(4)
Bipod Mirror Mounts
557(4)
Thin Face Sheet Mirror Mounts
561(16)
General Considerations
561(5)
The Keck Telescopes
566(5)
Adaptive Mirror Systems
571(3)
The Advanced Electro-Optical System Telescope
574(1)
The MMT Adaptive Secondary Mirror
575(2)
Mounts for Large Space-Borne Mirrors
577(8)
The Hubble Space Telescope
577(2)
The Chandra X-Ray Telescope
579(3)
References
582(3)
Design and Mounting of Metallic Mirrors
Introduction
585(1)
General Considerations of Metal Mirrors
585(2)
Aluminum Mirrors
587(11)
Cast Aluminum Mirrors
593(1)
Machined Aluminum Mirrors
593(2)
Welded Aluminum Mirrors
595(3)
Beryllium Mirrors
598(9)
Mirrors Made from Other Metals
607(4)
Copper Mirrors
607(1)
Molybdenum Mirrors
607(1)
Silicon Carbide Mirrors
608(3)
Mirrors with Foam and Metal Matrix Cores
611(12)
Plating of Metal Mirrors
623(2)
Single-Point Diamond Turning of Metal Mirrors
625(11)
Conventional Mountings for Metal Mirrors
636(2)
Integral Mountings for Metal Mirrors
638(4)
Flexure Mountings for Larger Metal Mirrors
642(6)
Interfacing Multiple SPDT Components to Facilitate Assembly and Alignment
648(11)
References
652(7)
Optical Instrument Structural Design
Introduction
659(1)
Rigid Housing Configurations
659(16)
Military Binoculars
659(3)
Commercial Binoculars
662(1)
Tank Periscopes
663(3)
Space-Borne Spectro-Radiometer Cameras
666(3)
Large Aerial Camera Lens
669(5)
A Thermally Stable Optical Structure
674(1)
Modular Design Principles and Examples
675(12)
Injection-Molded Plastic Modules
676(1)
A Modular Military Binocular
677(5)
A Modular Spectrometer for Space Application
682(3)
A Dual-Collimator Module
685(2)
A Structural Design for High Shock Loading
687(2)
Athermalized Structural Designs
689(27)
Instruments Made from a Single Material
689(1)
The IRAS Telescope
689(1)
The Spitzer Space Telescope
690(3)
A Telescope with Optical and Inter-Component Interfaces Processed by SPDT
693(1)
Active Control of Focus
694(1)
Instruments Athermalized with Metering Structures
695(1)
The Orbiting Astronomical Observatory
696(2)
The Geostationary Operational Environmental Satellite
698(4)
The Deep Imaging Multi-Object Spectrograph
702(1)
Athermalization of the Multiangle Imaging Spectro-Radiometer
703(3)
Athermalization of the Hubble Space Telescope Truss Structure
706(3)
Athermalization of the Galaxy Evolution Explorer
709(3)
Athermalization of Refracting Optical Systems
712(4)
Geometries for Telescope Tube Structures
716(17)
The Serrurier Truss
716(2)
The New Multiple-Mirror Telescope
718(3)
The N-Tiered Truss
721(1)
The Chandra Telescope
721(3)
Truss Geometries for Minimal Gravitational and Wind Deflections
724(1)
Determinate Space Frames
725(4)
References
729(4)
Analysis of the Opto-Mechanical Design
Introduction
733(1)
Failure Predictions for Optics
733(15)
General Considerations
733(2)
Testing to Determine Component Strength
735(5)
The Weibull Failure Prediction Method
740(2)
The Safety Factor
742(1)
Time-to-Failure Prediction
743(1)
Rule-of-Thumb Stress Tolerances
744(4)
Stress Generation at Opto-Mechanical Interfaces
748(14)
Point Contacts
748(3)
Short Line Contacts
751(5)
Annular Contacts
756(2)
The Sharp Corner Interface
758(1)
The Tangential Interface
759(1)
The Toroidal Interface
759(2)
The Spherical Interface
761(1)
The Flat Bevel Interface
762(1)
Parametric Comparisons of Annular Interface Types
762(2)
Bending Effects Due to Offset Annular Contacts
764(3)
Bending Stress in the Optical Component
765(2)
Change in Surface Sagittal Depth of a Bent Optic
767(1)
Effects of Temperature Changes
767(28)
Radial Effects at Reduced Temperature
768(1)
Radial Stress in the Optic
768(1)
Tangential (Hoop) Stress in the Mount Wall
769(1)
Radial Effects at Increased Temperature
770(1)
Changes in Axial Preload Caused by Temperature Changes
770(1)
General Considerations
770(2)
Approximation of K3 Considering Bulk Effects Only
772(6)
Approximation of K3 Considering Effects Other Than Bulk Effects
778(1)
Glass and Metal Surface Deflection Effects
779(1)
Retainer Deflection Effects
779(1)
Shoulder Deflection Effects
780(1)
Radial Dimension Change Effects
780(1)
Illustrative Examples of K3 Estimation
780(1)
Estimation of Tensile Contact Stresses in the Lens at Various Temperatures
781(3)
Advantages of Providing Controlled Axial Compliance in the Lens or Mirror Mount
784(11)
Effects of Temperature Gradients
795(5)
Radial Temperature Gradients
798(2)
Axial Temperature Gradients
800(1)
Stresses in Cemented and Bonded Optics Due to Temperature Changes
800(3)
Some Effects of Temperature Changes on Elastomerically Mounted Lenses
803(6)
References
806(3)
Appendix A Units and Their Conversion
809(18)
Appendix B Summary of Methods for Testing Optical Components and Optical Instruments under Adverse Environmental Conditions
B.1 Cold, Heat, Humidity Testing
811(1)
B.2 Mechanical Stress Testing
811(1)
B.3 Salt Mist Testing
812(1)
B.4 Cold, Low Air Pressure Testing
812(1)
B.5 Dust Testing
812(1)
B.6 Drip, Rain Testing
812(1)
B.7 High-Pressure, Low-Pressure, Immersion Testing
813(1)
B.8 Solar Radiation
813(1)
B.9 Combined Sinusoidal Vibration, Dry Heat, or Cold Testing
813(1)
B.10 Mold Growth Testing
813(1)
B.11 Corrosion Testing
814(1)
B.12 Combined Shock, Bump, or Free Fall, Dry Heat, or Cold Testing
814(1)
B.13 Dew, Hoarfrost, Ice Testing
815(4)
Appendix C Hardness of Materials
References
817(2)
Appendix D Glossary
D.1 Units of Measure and Abbreviations Used
819(1)
D.2 Prefixes
820(1)
D.3 Greek Symbol Applications
820(1)
D.4 Acronyms, Abbreviations, and Other Terms
820(7)
Index 827