Muutke küpsiste eelistusi

Oscillating Heat Pipes 2015 ed. [Kõva köide]

  • Formaat: Hardback, 427 pages, kõrgus x laius: 235x155 mm, kaal: 8668 g, 36 Illustrations, color; 216 Illustrations, black and white; XVI, 427 p. 252 illus., 36 illus. in color., 1 Hardback
  • Ilmumisaeg: 24-May-2015
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1493925032
  • ISBN-13: 9781493925032
  • Kõva köide
  • Hind: 206,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 242,59 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 427 pages, kõrgus x laius: 235x155 mm, kaal: 8668 g, 36 Illustrations, color; 216 Illustrations, black and white; XVI, 427 p. 252 illus., 36 illus. in color., 1 Hardback
  • Ilmumisaeg: 24-May-2015
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1493925032
  • ISBN-13: 9781493925032
This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluids effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, graduate students, practicing engineers, researchers, and scientists working in the area of heat pipes.

This book also

·       Includes detailed descriptions on how an oscillating heat pipe is fabricated, tested, and utilized

·       Covers fundamentals of oscillating flow and heat transfer in an oscillating heat pipe

·       Provides general presentation of conventional heat pipes

 
1 Introduction
1(12)
1.1 What Is a Heat Pipe?
1(1)
1.2 What Is an OHP?
2(3)
1.3 Advantages of OHPs
5(8)
1.3.1 High Heat Transport Capability
6(2)
1.3.2 Gravity Independence
8(1)
1.3.3 Excellent Form Factor and Manufacturing
8(2)
References
10(3)
2 Fundamentals
13(74)
2.1 Introduction
13(1)
2.2 Surface Tension
13(6)
2.3 Laplace--Young Equation
19(6)
2.4 Saturation Pressure
25(7)
2.5 Contact Angle
32(10)
2.5.1 Temperature Effect
36(1)
2.5.2 Surface Roughness Effect
37(5)
2.6 Contact Angle Measurement
42(1)
2.7 Dynamic Contact Angle
43(3)
2.8 Thin Film Evaporation
46(41)
2.8.1 Disjoining Pressure
47(1)
2.8.2 Pressure Difference Across the Liquid--Vapor Interface
48(3)
2.8.3 Analytical Model
51(11)
2.8.4 Microscopic Model
62(4)
2.8.5 Momentum Conservation Model
66(9)
2.8.6 Evaporating Thin Film on a Curved Surface
75(6)
2.8.7 Thin Film Evaporation in a Triangular Groove
81(4)
References
85(2)
3 Oscillating Flow and Heat Transfer of Single Phase in Capillary Tubes
87(54)
3.1 Introduction
87(1)
3.2 Reciprocating Flow
87(2)
3.3 Pulsating Flow
89(2)
3.4 Fully Developed Oscillating Pipe Flow
91(13)
3.4.1 Critical Dimensionless Parameter of Laminar Oscillating Pipe Flow
91(2)
3.4.2 Laminar Pulsating Pipe Flow
93(5)
3.4.3 Richardson's Annular Effect
98(6)
3.5 Developing Region of Pipe Flow
104(2)
3.6 Viscous Dissipation Effect in a Capillary Tube
106(3)
3.7 Graetz Question
109(5)
3.8 Heat Transfer in a Laminar Reciprocating Flow
114(6)
3.9 Heat Transfer in Laminar Pulsating Flow
120(17)
3.9.1 Pulsating Pipe Flow at Sinusoidal Pressure
120(6)
3.9.2 Pulsating Pipe Flow at Triangular Pressure
126(11)
3.10 Heat Transfer in Turbulent Pulsating Flow
137(4)
References
139(2)
4 Oscillating Motion and Heat Transfer Mechanisms of Oscillating Heat Pipes
141(62)
4.1 Introduction
141(2)
4.2 Gas Spring Constant
143(3)
4.3 Maximum Radius of Microchannels in an OHP
146(3)
4.4 Oscillating Motion of One Vapor Bubble and One Liquid Plug
149(11)
4.5 Oscillating Motion of Two Vapor Bubbles and One Liquid Plug
160(5)
4.6 Oscillating Motion of Multi Liquid Plugs and Multi Vapor Bubbles
165(12)
4.6.1 Modal Analysis
167(7)
4.6.2 Transient Analysis
174(3)
4.7 Exciting Force to Start-Up Oscillating Motions and Maximum Filling Ratio
177(5)
4.8 Heat Transfer Model of an OHP
182(6)
4.8.1 Heat Transfer in the Evaporating Section
183(2)
4.8.2 Heat Transfer in the Condensing Section
185(3)
4.9 Operating Limitation in an OHP
188(15)
References
200(3)
5 Factors Affecting Oscillating Motion and Heat Transfer in an OHP
203(32)
5.1 Introduction
203(1)
5.2 Heat Flux Level Effect
203(2)
5.3 Check Valve Effect
205(4)
5.4 Channel Layer Effect
209(3)
5.5 Gravity Effect
212(3)
5.6 Wall Mass Effect
215(6)
5.7 Ultrasound Effect
221(6)
5.8 Magnetic Field Effect
227(2)
5.9 Hydrophobic Surface Effect
229(6)
References
232(3)
6 Visualization of Oscillating Heat Pipes
235(54)
6.1 Introduction
235(1)
6.2 Visible Light Imaging
235(16)
6.2.1 Experimental Setup
236(5)
6.2.2 Observations
241(10)
6.3 Neutron Radiography
251(33)
6.3.1 Experimental Setup
251(5)
6.3.2 Observations
256(17)
6.3.3 Neutron Phase Volumetric Analysis
273(11)
6.4 Proton Radiography
284(2)
6.4.1 Background
284(1)
6.4.2 Experimental Consideration and Observation
284(2)
6.5 Summary
286(3)
References
287(2)
7 Nanofluid Oscillating Heat Pipe
289(24)
7.1 Introduction
289(1)
7.2 Nanofluids
290(6)
7.2.1 Development of Nanofluids
290(1)
7.2.2 Mechanisms of Nanofluids
291(3)
7.2.3 Fabrication of Nanofluids
294(1)
7.2.4 Enhancement of Thermal Conductivity in Nanofluids
295(1)
7.3 Nanofluid Oscillating Heat Pipe
296(2)
7.4 Parameters Affecting Heat Transfer Performance
298(15)
7.4.1 Operating Temperature Effect
299(1)
7.4.2 Nanoparticle Effect on the Startup and Nucleation
300(5)
7.4.3 Effects of Nanoparticle Concentration and Filling Ratio
305(2)
7.4.4 Nanofluid Surface Effect
307(3)
7.4.5 Nanoparticle Size Effect
310(1)
References
311(2)
8 Experiment and Manufacturing Considerations
313(20)
8.1 Introduction
313(1)
8.2 Channel Configuration
313(4)
8.3 Working Fluid Selection
317(1)
8.4 Material Selection
318(1)
8.5 Heat Pipe Fabrication
319(2)
8.6 Leak Detection
321(2)
8.7 Charging System
323(6)
8.8 Experimental Setup and Procedure
329(4)
References
331(2)
9 Conventional Heat Pipes
333(62)
9.1 Introduction
333(2)
9.2 Capillary Limitation
335(34)
9.2.1 Capillary Pressure
337(5)
9.2.2 Maximum Capillary Pressure
342(8)
9.2.3 Liquid Pressure Drop
350(7)
9.2.4 Vapor Pressure Drop
357(10)
9.2.5 Maximum Capillary Heat Transport
367(2)
9.3 Other Heat Transport Limitations
369(6)
9.3.1 Boiling Limit
369(3)
9.3.2 Sonic Limit
372(2)
9.3.3 Entrainment Limit
374(1)
9.3.4 Viscous Limit
375(1)
9.4 Effective Thermal Conductivity
375(4)
9.5 Samples of Heat Transfer Modeling
379(7)
9.5.1 Heat Transfer Rate Effect on Heat Transfer Performance of a Sintered Heat Pipe
379(6)
9.5.2 Effects of Particle Size and Wick Thickness of Sintered Particles
385(1)
9.6 Thermosyphon
386(2)
9.7 Loop Heat Pipes/Capillary Pumped Loop
388(1)
9.8 Vapor Chamber
389(1)
9.9 Micro Heat Pipes
389(1)
9.10 Variable Conductance Heat Pipes
390(1)
9.11 Rotating Heat Pipes
391(1)
9.12 High-Temperature Heat Pipes (Metal Heat Pipes)
392(1)
9.13 Cryogenic Heat Pipes
392(3)
References
393(2)
Appendix A 395(29)
References 424(1)
Index 425