|
|
1 | (12) |
|
|
1 | (1) |
|
|
2 | (3) |
|
|
5 | (8) |
|
1.3.1 High Heat Transport Capability |
|
|
6 | (2) |
|
1.3.2 Gravity Independence |
|
|
8 | (1) |
|
1.3.3 Excellent Form Factor and Manufacturing |
|
|
8 | (2) |
|
|
10 | (3) |
|
|
13 | (74) |
|
|
13 | (1) |
|
|
13 | (6) |
|
2.3 Laplace--Young Equation |
|
|
19 | (6) |
|
|
25 | (7) |
|
|
32 | (10) |
|
|
36 | (1) |
|
2.5.2 Surface Roughness Effect |
|
|
37 | (5) |
|
2.6 Contact Angle Measurement |
|
|
42 | (1) |
|
2.7 Dynamic Contact Angle |
|
|
43 | (3) |
|
2.8 Thin Film Evaporation |
|
|
46 | (41) |
|
2.8.1 Disjoining Pressure |
|
|
47 | (1) |
|
2.8.2 Pressure Difference Across the Liquid--Vapor Interface |
|
|
48 | (3) |
|
|
51 | (11) |
|
|
62 | (4) |
|
2.8.5 Momentum Conservation Model |
|
|
66 | (9) |
|
2.8.6 Evaporating Thin Film on a Curved Surface |
|
|
75 | (6) |
|
2.8.7 Thin Film Evaporation in a Triangular Groove |
|
|
81 | (4) |
|
|
85 | (2) |
|
3 Oscillating Flow and Heat Transfer of Single Phase in Capillary Tubes |
|
|
87 | (54) |
|
|
87 | (1) |
|
|
87 | (2) |
|
|
89 | (2) |
|
3.4 Fully Developed Oscillating Pipe Flow |
|
|
91 | (13) |
|
3.4.1 Critical Dimensionless Parameter of Laminar Oscillating Pipe Flow |
|
|
91 | (2) |
|
3.4.2 Laminar Pulsating Pipe Flow |
|
|
93 | (5) |
|
3.4.3 Richardson's Annular Effect |
|
|
98 | (6) |
|
3.5 Developing Region of Pipe Flow |
|
|
104 | (2) |
|
3.6 Viscous Dissipation Effect in a Capillary Tube |
|
|
106 | (3) |
|
|
109 | (5) |
|
3.8 Heat Transfer in a Laminar Reciprocating Flow |
|
|
114 | (6) |
|
3.9 Heat Transfer in Laminar Pulsating Flow |
|
|
120 | (17) |
|
3.9.1 Pulsating Pipe Flow at Sinusoidal Pressure |
|
|
120 | (6) |
|
3.9.2 Pulsating Pipe Flow at Triangular Pressure |
|
|
126 | (11) |
|
3.10 Heat Transfer in Turbulent Pulsating Flow |
|
|
137 | (4) |
|
|
139 | (2) |
|
4 Oscillating Motion and Heat Transfer Mechanisms of Oscillating Heat Pipes |
|
|
141 | (62) |
|
|
141 | (2) |
|
|
143 | (3) |
|
4.3 Maximum Radius of Microchannels in an OHP |
|
|
146 | (3) |
|
4.4 Oscillating Motion of One Vapor Bubble and One Liquid Plug |
|
|
149 | (11) |
|
4.5 Oscillating Motion of Two Vapor Bubbles and One Liquid Plug |
|
|
160 | (5) |
|
4.6 Oscillating Motion of Multi Liquid Plugs and Multi Vapor Bubbles |
|
|
165 | (12) |
|
|
167 | (7) |
|
|
174 | (3) |
|
4.7 Exciting Force to Start-Up Oscillating Motions and Maximum Filling Ratio |
|
|
177 | (5) |
|
4.8 Heat Transfer Model of an OHP |
|
|
182 | (6) |
|
4.8.1 Heat Transfer in the Evaporating Section |
|
|
183 | (2) |
|
4.8.2 Heat Transfer in the Condensing Section |
|
|
185 | (3) |
|
4.9 Operating Limitation in an OHP |
|
|
188 | (15) |
|
|
200 | (3) |
|
5 Factors Affecting Oscillating Motion and Heat Transfer in an OHP |
|
|
203 | (32) |
|
|
203 | (1) |
|
5.2 Heat Flux Level Effect |
|
|
203 | (2) |
|
|
205 | (4) |
|
|
209 | (3) |
|
|
212 | (3) |
|
|
215 | (6) |
|
|
221 | (6) |
|
5.8 Magnetic Field Effect |
|
|
227 | (2) |
|
5.9 Hydrophobic Surface Effect |
|
|
229 | (6) |
|
|
232 | (3) |
|
6 Visualization of Oscillating Heat Pipes |
|
|
235 | (54) |
|
|
235 | (1) |
|
6.2 Visible Light Imaging |
|
|
235 | (16) |
|
|
236 | (5) |
|
|
241 | (10) |
|
|
251 | (33) |
|
|
251 | (5) |
|
|
256 | (17) |
|
6.3.3 Neutron Phase Volumetric Analysis |
|
|
273 | (11) |
|
|
284 | (2) |
|
|
284 | (1) |
|
6.4.2 Experimental Consideration and Observation |
|
|
284 | (2) |
|
|
286 | (3) |
|
|
287 | (2) |
|
7 Nanofluid Oscillating Heat Pipe |
|
|
289 | (24) |
|
|
289 | (1) |
|
|
290 | (6) |
|
7.2.1 Development of Nanofluids |
|
|
290 | (1) |
|
7.2.2 Mechanisms of Nanofluids |
|
|
291 | (3) |
|
7.2.3 Fabrication of Nanofluids |
|
|
294 | (1) |
|
7.2.4 Enhancement of Thermal Conductivity in Nanofluids |
|
|
295 | (1) |
|
7.3 Nanofluid Oscillating Heat Pipe |
|
|
296 | (2) |
|
7.4 Parameters Affecting Heat Transfer Performance |
|
|
298 | (15) |
|
7.4.1 Operating Temperature Effect |
|
|
299 | (1) |
|
7.4.2 Nanoparticle Effect on the Startup and Nucleation |
|
|
300 | (5) |
|
7.4.3 Effects of Nanoparticle Concentration and Filling Ratio |
|
|
305 | (2) |
|
7.4.4 Nanofluid Surface Effect |
|
|
307 | (3) |
|
7.4.5 Nanoparticle Size Effect |
|
|
310 | (1) |
|
|
311 | (2) |
|
8 Experiment and Manufacturing Considerations |
|
|
313 | (20) |
|
|
313 | (1) |
|
8.2 Channel Configuration |
|
|
313 | (4) |
|
8.3 Working Fluid Selection |
|
|
317 | (1) |
|
|
318 | (1) |
|
8.5 Heat Pipe Fabrication |
|
|
319 | (2) |
|
|
321 | (2) |
|
|
323 | (6) |
|
8.8 Experimental Setup and Procedure |
|
|
329 | (4) |
|
|
331 | (2) |
|
9 Conventional Heat Pipes |
|
|
333 | (62) |
|
|
333 | (2) |
|
|
335 | (34) |
|
|
337 | (5) |
|
9.2.2 Maximum Capillary Pressure |
|
|
342 | (8) |
|
9.2.3 Liquid Pressure Drop |
|
|
350 | (7) |
|
9.2.4 Vapor Pressure Drop |
|
|
357 | (10) |
|
9.2.5 Maximum Capillary Heat Transport |
|
|
367 | (2) |
|
9.3 Other Heat Transport Limitations |
|
|
369 | (6) |
|
|
369 | (3) |
|
|
372 | (2) |
|
|
374 | (1) |
|
|
375 | (1) |
|
9.4 Effective Thermal Conductivity |
|
|
375 | (4) |
|
9.5 Samples of Heat Transfer Modeling |
|
|
379 | (7) |
|
9.5.1 Heat Transfer Rate Effect on Heat Transfer Performance of a Sintered Heat Pipe |
|
|
379 | (6) |
|
9.5.2 Effects of Particle Size and Wick Thickness of Sintered Particles |
|
|
385 | (1) |
|
|
386 | (2) |
|
9.7 Loop Heat Pipes/Capillary Pumped Loop |
|
|
388 | (1) |
|
|
389 | (1) |
|
|
389 | (1) |
|
9.10 Variable Conductance Heat Pipes |
|
|
390 | (1) |
|
|
391 | (1) |
|
9.12 High-Temperature Heat Pipes (Metal Heat Pipes) |
|
|
392 | (1) |
|
9.13 Cryogenic Heat Pipes |
|
|
392 | (3) |
|
|
393 | (2) |
Appendix A |
|
395 | (29) |
References |
|
424 | (1) |
Index |
|
425 | |