Foreword |
|
13 | (4) |
Introduction |
|
17 | (4) |
|
Part I. Particle Swarm Optimization |
|
|
21 | (172) |
|
What is a Difficult Problem? |
|
|
23 | (6) |
|
|
23 | (2) |
|
Estimation and practical measurement |
|
|
25 | (1) |
|
For ``amatheurs'': some estimates of difficulty |
|
|
26 | (2) |
|
|
27 | (1) |
|
|
27 | (1) |
|
Function DΣd=1 √Xd| sin (Xd)| |
|
|
27 | (1) |
|
Traveling salesman on D cities |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
29 | (8) |
|
|
29 | (1) |
|
An aside on the spreading of a rumor |
|
|
30 | (1) |
|
|
30 | (4) |
|
What is really transmitted |
|
|
34 | (1) |
|
Cooperation versus competition |
|
|
35 | (1) |
|
For ``amatheurs'': a simple calculation of propagation of rumor |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
37 | (14) |
|
|
37 | (7) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
40 | (2) |
|
|
42 | (2) |
|
|
44 | (1) |
|
Principal drawbacks of this formulation |
|
|
45 | (3) |
|
|
45 | (3) |
|
Explosion and maximum velocity |
|
|
48 | (1) |
|
|
48 | (1) |
|
For ``amatheurs'': average number of informants |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
51 | (8) |
|
What is the purpose of test functions? |
|
|
51 | (1) |
|
|
52 | (1) |
|
Representations and comments |
|
|
52 | (4) |
|
For ``amatheurs'': estimates of levels of difficulty |
|
|
56 | (2) |
|
|
56 | (1) |
|
|
56 | (1) |
|
|
57 | (1) |
|
|
57 | (1) |
|
Difficulty according to the search effort |
|
|
58 | (1) |
|
|
58 | (1) |
|
|
59 | (12) |
|
|
59 | (2) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
62 | (2) |
|
|
63 | (1) |
|
|
64 | (1) |
|
On the comparison of results |
|
|
64 | (1) |
|
For ``amatheurs'': confidence in the estimate of a rate of failure |
|
|
65 | (3) |
|
|
68 | (1) |
|
|
69 | (2) |
|
|
71 | (16) |
|
|
71 | (1) |
|
|
72 | (1) |
|
Robustness and performance maps |
|
|
73 | (7) |
|
Theoretical difficulty and noted difficulty |
|
|
80 | (1) |
|
|
80 | (5) |
|
|
85 | (2) |
|
Swarm: Memory and Graphs of Influence |
|
|
87 | (16) |
|
Circular neighborhood of the historical PSO |
|
|
87 | (1) |
|
|
88 | (2) |
|
|
90 | (2) |
|
Random variable topologies |
|
|
92 | (1) |
|
|
92 | (1) |
|
Recruitment by common channel of communication |
|
|
92 | (1) |
|
Influence of the number of informants |
|
|
93 | (2) |
|
|
93 | (2) |
|
In random variable topology |
|
|
95 | (1) |
|
Influence of the number of memories |
|
|
95 | (2) |
|
Reorganizations of the memory-swarm |
|
|
97 | (2) |
|
|
97 | (1) |
|
Queen and other centroids |
|
|
98 | (1) |
|
|
98 | (1) |
|
For ``amatheurs'': temporal connectivity in random recruitment |
|
|
99 | (2) |
|
|
101 | (2) |
|
Distributions of Proximity |
|
|
103 | (18) |
|
|
103 | (1) |
|
Review of rectangular distribution |
|
|
104 | (1) |
|
Alternative distributions of possibilities |
|
|
105 | (8) |
|
Ellipsoidal positive sectors |
|
|
105 | (1) |
|
|
106 | (1) |
|
Local by independent Gaussians |
|
|
107 | (1) |
|
The class of one-dimensional distributions |
|
|
107 | (1) |
|
|
108 | (4) |
|
|
112 | (1) |
|
Some comparisons of results |
|
|
113 | (3) |
|
|
116 | (2) |
|
Squaring of a hypersphere |
|
|
116 | (1) |
|
|
117 | (1) |
|
Random volume for an adjusted ellipsoid |
|
|
117 | (1) |
|
Uniform distribution in a D-sphere |
|
|
118 | (1) |
|
C program of isotropic distribution |
|
|
118 | (1) |
|
|
119 | (2) |
|
Optimal Parameter Settings |
|
|
121 | (8) |
|
Defense of manual parameter setting |
|
|
121 | (1) |
|
Better parameter settings for the benchmark set |
|
|
122 | (5) |
|
|
122 | (1) |
|
To optimize the optimizer |
|
|
123 | (2) |
|
|
125 | (1) |
|
|
125 | (1) |
|
|
125 | (1) |
|
Topology and the number of informants |
|
|
125 | (1) |
|
|
125 | (1) |
|
|
126 | (1) |
|
Informants N and memories M |
|
|
126 | (1) |
|
|
127 | (1) |
|
For ``amatheurs'': number of graphs of information |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
129 | (10) |
|
|
129 | (1) |
|
|
129 | (1) |
|
|
129 | (1) |
|
|
130 | (5) |
|
Weighting with temporal decrease |
|
|
130 | (1) |
|
Selection and replacement |
|
|
131 | (1) |
|
|
132 | (1) |
|
Nonparametric adaptations |
|
|
133 | (2) |
|
|
135 | (3) |
|
Formulas of temporal decrease |
|
|
135 | (1) |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
137 | (1) |
|
|
138 | (1) |
|
Tribes or Cooperatin of Tribes |
|
|
139 | (12) |
|
Towards an ultimate program |
|
|
139 | (2) |
|
|
141 | (6) |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
142 | (1) |
|
|
142 | (2) |
|
|
144 | (1) |
|
Strategies of displacement |
|
|
145 | (1) |
|
|
146 | (1) |
|
Direct comparison, general case |
|
|
147 | (1) |
|
Comparison by pseudo-gradients, metric spaces |
|
|
147 | (1) |
|
Results on the benchmark set |
|
|
147 | (2) |
|
|
149 | (2) |
|
|
151 | (16) |
|
Some preliminary reflections |
|
|
151 | (1) |
|
Representation of the constraints |
|
|
152 | (1) |
|
Imperative constraints and indicative constraints |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
154 | (2) |
|
|
155 | (1) |
|
List not ordered (and not orderable) |
|
|
155 | (1) |
|
|
155 | (1) |
|
|
155 | (1) |
|
|
156 | (1) |
|
``all different'' confinement |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
158 | (3) |
|
|
161 | (1) |
|
C source code. Dichotomic search in a list |
|
|
162 | (1) |
|
|
162 | (3) |
|
|
165 | (2) |
|
|
167 | (22) |
|
|
167 | (1) |
|
Typology and choice of problems |
|
|
168 | (1) |
|
Canonical representation of a problem of optimization |
|
|
169 | (1) |
|
|
169 | (1) |
|
|
170 | (1) |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
173 | (1) |
|
Training of a neural network |
|
|
174 | (3) |
|
|
175 | (1) |
|
Diabetes among Pima Indians |
|
|
176 | (1) |
|
|
176 | (1) |
|
|
176 | (1) |
|
|
177 | (5) |
|
|
179 | (1) |
|
|
180 | (2) |
|
|
182 | (3) |
|
|
185 | (3) |
|
For ``amatheurs'': the magic of squares |
|
|
188 | (1) |
|
|
188 | (1) |
|
|
189 | (4) |
|
|
189 | (1) |
|
|
189 | (1) |
|
The beginning of the end? |
|
|
190 | (3) |
|
|
193 | (38) |
|
|
195 | (6) |
|
|
195 | (1) |
|
|
195 | (1) |
|
A counter-intuitive result |
|
|
196 | (1) |
|
|
197 | (1) |
|
For ``amatheurs'': probability of questioning an improved memory |
|
|
198 | (1) |
|
|
199 | (2) |
|
|
201 | (10) |
|
|
201 | (1) |
|
|
202 | (1) |
|
|
203 | (1) |
|
|
204 | (6) |
|
|
210 | (1) |
|
|
211 | (14) |
|
|
211 | (1) |
|
An example with the magnifying glass |
|
|
212 | (5) |
|
|
212 | (2) |
|
|
214 | (3) |
|
|
217 | (3) |
|
|
217 | (1) |
|
|
218 | (2) |
|
For experienced ``amatheurs'': convergence and constriction |
|
|
220 | (4) |
|
|
220 | (1) |
|
Coefficients of constriction |
|
|
221 | (1) |
|
|
222 | (2) |
|
|
224 | (1) |
|
Techniques and Alternatives |
|
|
225 | (6) |
|
|
225 | (1) |
|
|
226 | (1) |
|
A criterion of abandonment |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
227 | (1) |
|
|
228 | (1) |
|
|
229 | (1) |
|
Maximum flight and criterion of abandonment |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
230 | (1) |
Further Information |
|
231 | (2) |
Bibliography |
|
233 | (6) |
Index |
|
239 | |