Muutke küpsiste eelistusi

Particles, Bubbles And Drops: Their Motion, Heat And Mass Transfer [Pehme köide]

(Texas Christian Univ, Usa)
  • Formaat: Paperback / softback, 424 pages
  • Ilmumisaeg: 25-Apr-2006
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9812566481
  • ISBN-13: 9789812566485
Teised raamatud teemal:
  • Formaat: Paperback / softback, 424 pages
  • Ilmumisaeg: 25-Apr-2006
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9812566481
  • ISBN-13: 9789812566485
Teised raamatud teemal:
The field of multiphase flows has grown by leaps and bounds in the last thirty years and is now regarded as a major discipline. Engineering applications, products and processes with particles, bubbles and drops have consistently grown in number and importance. An increasing number of conferences, scientific fora and archived journals are dedicated to the dissemination of information on flow, heat and mass transfer of fluids with particles, bubbles and drops. Numerical computations and thought experiments have supplemented most physical experiments and a great deal of the product design and testing processes. The literature on computational fluid dynamics with particles, bubbles and drops has grown at an exponential rate, giving rise to new results, theories and better understanding of the transport processes with particles, bubbles and drops. This book captures and summarizes all these advances in a unified, succinct and pedagogical way.
Preface vii
1. Introduction
1(22)
1.1 Historical background
1(8)
1.1.1 Forces exerted by a fluid and the equation of motion
2(5)
1.1.2 Heat transfer
7(2)
1.2 Terminology and nomenclature
9(6)
1.2.1 Common terms and definitions
10(1)
1.2.2 Nomenclature
11(3)
1.2.2.1 Latin symbols
11(1)
1.2.2.2 Greek symbols
12(1)
1.2.2.3 Subscripts
13(1)
1.2.2.4 Superscripts
13(1)
1.2.3 Common abbreviations
14(1)
1.2.4 Dimensionless numbers (Lch=2α)
14(1)
1.3 Examples of applications in science and technology
15(8)
1.3.1 Oil and gas pipelines
16(1)
1.3.2 Geothermal wells
17(1)
1.3.3 Steam generation in boilers and burners
18(1)
1.3.4 Sediment flow
18(1)
1.3.5 Steam condensation
19(1)
1.3.6 Petroleum refining
20(1)
1.3.7 Spray drying
20(1)
1.3.8 Pneumatic conveying
21(1)
1.3.9 Fluidized beds
22(1)
2. Fundamental equations and characteristics of particles, bubbles and drops
23(40)
2.1 Fundamental equations of a continuum
23(18)
2.1.1 The concept of a material continuum - basic assumptions
24(3)
2.1.2 Fundamental equations in integral form
27(6)
2.1.3 Fundamental equations in differential form
33(3)
2.1.4 Generalized form of the fundamental equations
36(1)
2.1.5 Conservation equations at the interfaces - jump conditions
37(4)
2.2 Conservation equations for a single particle, bubble or drop
41(2)
2.3 Characteristics of particles, bubbles and drops
43(10)
2.3.1 Shapes of solid particles
44(4)
2.3.1.1 Symmetric particles
44(1)
2.3.1.2 Asymmetric or irregular particles
45(3)
2.3.2 Shapes of bubbles and drops in motion - shape maps
48(5)
2.4 Discrete and continuous size distributions
53(10)
2.4.1 Useful parameters in discrete size distributions
54(3)
2.4.2 Continuous size distributions
57(2)
2.4.3 Drop distribution functions
59(4)
3. Low Reynolds number flows
63(44)
3.1 Conservation equations
63(6)
3.1.1 Heat-mass transfer analogy
65(1)
3.1.2 Mass, momentum and heat transfer - Transport coefficients
66(3)
3.2 Steady motion and heat/mass transfer at creeping flow
69(5)
3.3 Transient, creeping flow motion
74(11)
3.3.1 Notes on the history term
76(4)
3.3.2 Hydrodynamic force on a viscous sphere
80(1)
3.3.3 Equation of motion with interfacial slip
81(3)
3.3.4 Transient motion of an expanding or collapsing bubble
84(1)
3.4 Transient heat/mass transfer at creeping flow
85(4)
3.5 Hydrodynamic force and heat transfer for a spheroid at creeping flow
89(4)
3.6 Steady motion and heat/mass transfer at small Re and Pe
93(3)
3.7 Transient hydrodynamic force at small Re
96(6)
3.8 Transient heat/mass transfer at small Pe
102(5)
4 High Reynolds number flows
107(50)
4.1 Flow fields around rigid and fluid spheres
107(11)
4.1.1 Flow around rigid spheres
107(7)
4.1.2 Flow inside and around viscous spheres
114(4)
4.2 Steady hydrodynamic force and heat transfer
118(26)
4.2.1 Drag on rigid spheres
118(3)
4.2.2 Heat transfer from rigid sphere
121(1)
4.2.3 Radiation effects
122(2)
4.2.4 Drag on viscous spheres
124(4)
4.2.5 Heat transfer from viscous spheres
128(5)
4.2.6 Drag on viscous spheres with mass transfer - Blowing effects
133(3)
4.2.7 Heat transfer from viscous spheres with mass transfer – Blowing effects
136(5)
4.2.8 Effects of compressibility and rarefaction
141(3)
4.3 Transient hydrodynamic force
144(7)
4.4 Transient heat transfer
151(6)
4.4.1 Transient temperature measurements
155(2)
5. Non-spherical particles, bubbles and drops
157(34)
5.1 Transport coefficients of rigid particles at low Re
157(8)
5.1.1 Hydrodynamic force and drag coefficients
158(3)
5.1.2 Heat and mass transfer coefficients
161(4)
5.2 Hydrodynamic force for rigid particles at high Re
165(10)
5.2.1 Drag coefficients for disks and spheroids
165(3)
5.2.2 Drag coefficients and flow patterns around cylinders
168(4)
5.2.3 Drag coefficients of irregular particles
172(3)
5.3 Heat transfer for rigid particles at high Re
175(6)
5.3.1 Heat transfer coefficients for disks and spheroids
175(2)
5.3.2 Heat transfer coefficients for cylinders
177(2)
5.3.3 Heat transfer coefficients for irregular particles
179(2)
5.4 Non-spherical bubbles and drops
181(10)
5.4.1 Drag coefficients
181(9)
5.4.2 Heat transfer coefficients
190(1)
6. Effects of rotation, shear and boundaries
191(36)
6.1 Effects of relative rotation
192(3)
6.2 Effects of flow shear
195(7)
6.3 Effects of boundaries
202(11)
6.3.1 Main flow perpendicular to the boundary
203(2)
6.3.2 Main flow parallel to the boundary
205(6)
6.3.3 Equilibrium positions of spheres above horizontal boundaries
211(2)
6.4 Constrained motion in an enclosure
213(9)
6.4.1 Rigid spheres
213(4)
6.4.2 Viscous spheres
217(1)
6.4.3 Immersed objects at off-center positions
218(1)
6.4.4 Taylor bubbles
219(2)
6.4.5 Effects of enclosures on the heat and mass transfer
221(1)
6.5 Effects of boundaries on bubble and drop deformation
222(3)
6.6 A note on the lift force in transient flows
225(2)
7. Effects of turbulence
227(34)
7.1 Effects of free stream turbulence
227(5)
7.2 Turbulence modulation
232(6)
7.3 Drag reduction
238(4)
7.4 Turbulence models for immersed objects
242(12)
7.4.1 The trajectory model
242(1)
7.4.2 The Monte-Carlo method
243(8)
7.4.3 The two-fluid model
251(3)
7.5 Heat transfer in pipelines with particulates
254(2)
7.6 Turbophoresis and wall deposition
256(4)
7.7 Turbulence and coalescence of viscous spheres
260(1)
8. Electro-kinetic, thermo-kinetic and porosity effects
261(28)
8.1 Electrophoresis
261(9)
8.1.1 Electrophoretic motion
262(2)
8.1.2 Electro-osmosis
264(1)
8.1.3 Effects of the double layer on the electrophoretic motion
265(3)
8.1.4 Electrophoresis in capillaries-microelectrophoresis
268(2)
8.2 Brownian motion
270(2)
8.3 Thermophoresis
272(10)
8.3.1 Particle interactions and wall effects in thermophoresis
278(2)
8.3.2 Thermophoresis in turbulent flows
280(2)
8.4 Porous particles
282(7)
8.4.1 Surface boundary conditions
283(1)
8.4.2 Drag force on a porous sphere at low Re
284(1)
8.4.3 Heat transfer from porous particles
285(1)
8.4.4 Mass transfer from an object inside a porous medium
286(3)
9. Effects of higher concentration and collisions
289(36)
9.1 Interactions between dispersed objects
289(8)
9.1.1 Hydrodynamic interactions
290(6)
9.1.2 Thermal interactions and phase change
296(1)
9.2 Effects of concentration
297(10)
9.2.1 Effects on the hydrodynamic force
298(8)
9.2.2 Effects on the heat transfer
306(1)
9.2.3 Bubble columns
307(1)
9.3 Collisions of spheres
307(9)
9.3.1 Hard sphere model
308(3)
9.3.2 Soft-sphere model
311(1)
9.3.3 Drop collisions and coalescence
312(4)
9.4 Collisions with a wall – Mechanical effects
316(2)
9.5 Heat transfer during wall collisions
318(7)
9.5.1 Spray deposition
319(3)
9.5.2 Cooling enhancement by drop impingement
322(1)
9.5.3 Critical heat flux with drops
323(2)
10. Molecular and statistical modeling 325(18)
10.1 Molecular dynamics
325(8)
10.1.1 MD applications with particles, bubbles and drops
331(2)
10.2 Stokesian dynamics
333(4)
10.3 Statistical methods
337(8)
10.3.1 The probability distribution function (PDF)
338(5)
11. Numerical methods-CFD 343(30)
11.1 Forms of Navier-Stokes equations used in CFD
345(3)
11.1.1 Primitive variables
345(1)
11.1.2 Streamfunction-vorticity
346(1)
11.1.3 False transients
347(1)
11.2 Finite difference method
348(2)
11.3 Spectral and finite-element methods
350(4)
11.3.1 The spectral method
350(1)
11.3.2 The finite element and finite volume methods
351(3)
11.4 The Lattice-Boltzmann method
354(5)
11.5 The force coupling method
359(1)
11.6 Turbulent flow models
360(10)
11.6.1 Direct numerical simulations (DNS)
360(4)
11.6.2 Reynolds decomposition and averaged equations
364(1)
11.6.3 The kappa-epsilon model
365(2)
11.6.4 Large Eddy simulations (LES)
367(3)
11.7 Potential flow-boundary integral method
370(3)
References 373(34)
Subject Index 407