Muutke küpsiste eelistusi

Periodic Homogenization of Elliptic Systems 2018 ed. [Kõva köide]

  • Formaat: Hardback, 291 pages, kõrgus x laius: 235x155 mm, kaal: 623 g, IX, 291 p., 1 Hardback
  • Sari: Operator Theory: Advances and Applications 269
  • Ilmumisaeg: 14-Sep-2018
  • Kirjastus: Birkhauser Verlag AG
  • ISBN-10: 3319912135
  • ISBN-13: 9783319912134
Teised raamatud teemal:
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 291 pages, kõrgus x laius: 235x155 mm, kaal: 623 g, IX, 291 p., 1 Hardback
  • Sari: Operator Theory: Advances and Applications 269
  • Ilmumisaeg: 14-Sep-2018
  • Kirjastus: Birkhauser Verlag AG
  • ISBN-10: 3319912135
  • ISBN-13: 9783319912134
Teised raamatud teemal:

This monograph surveys the theory of quantitative homogenization for second-order linear elliptic systems in divergence form with rapidly oscillating periodic coefficients in a bounded domain. It begins with a review of the classical qualitative homogenization theory, and addresses the problem of convergence rates of solutions. The main body of the monograph investigates various interior and boundary regularity estimates that are uniform in the small parameter e>0. Additional topics include convergence rates for Dirichlet eigenvalues and asymptotic expansions of fundamental solutions, Green functions, and Neumann functions.

The monograph is intended for advanced graduate students and researchers in the general areas of analysis and partial differential equations. It provides the reader with a clear and concise exposition of an important and currently active area of quantitative homogenization.

Elliptic Systems of Second Order with Periodic Coeffcients.- Convergence
Rates, Part I.- Interior Estimates.- Regularity for Dirichlet
Problem.- Regularity for Neumann Problem.- Convergence Rates, Part II.- L2
Estimates in Lipschitz Domains.