Muutke küpsiste eelistusi

Permanent Magnet Motor Technology: Design and Applications, Second Edition, 2nd New edition [Kõva köide]

Edited by (BT Cellnet, London, UK), Edited by (University of Technology and Life Sciences, Bydgoszcz, Poland), (University of Technology and Life Sciences, Bydgoszcz, Poland)
  • Formaat: Hardback, 616 pages, kõrgus x laius: 229x152 mm, kaal: 998 g, Contains 113 hardbacks
  • Sari: Electrical and Computer Engineering
  • Ilmumisaeg: 22-Jan-2002
  • Kirjastus: Marcel Dekker Inc
  • ISBN-10: 0824707397
  • ISBN-13: 9780824707392
  • Kõva köide
  • Hind: 239,50 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 616 pages, kõrgus x laius: 229x152 mm, kaal: 998 g, Contains 113 hardbacks
  • Sari: Electrical and Computer Engineering
  • Ilmumisaeg: 22-Jan-2002
  • Kirjastus: Marcel Dekker Inc
  • ISBN-10: 0824707397
  • ISBN-13: 9780824707392
Co-authored by a world-renowned expert in the field, Permanent Magnet Motor Technology: Design and Applications, Second Edition demonstrates the construction of PM motor drives and supplies ready-to-implement solutions for common roadblocks. The author presents fundamental equations and calculations to determine and evaluate system performance, efficiency, and reliability; explores modern computer-aided design of PM motors, including the finite element approach; and covers how to select PM motors to meet the specific requirements of electrical drives. The numerous examples, models, and diagrams provided in each chapter give the reader a clear understanding of motor operations and characteristics.
Preface to the Second Edition iii
Preface to the First Edition v
Introduction
1(42)
Permanent magnet versus electromagnetic excitation
1(2)
Permanent magnet motor drives
3(7)
d.c. commutator motor drives
4(2)
a.c. synchronous motor drives
6(3)
PM d.c. brushless motor drives
9(1)
Stepping motor drives
9(1)
Towards increasing the motor efficiency
10(4)
Classification of permanent magnet electric motors
14(2)
Trends in permanent magnet motors and drives industry
16(1)
Applications of permanent magnet motors
16(12)
Mechatronics
28(1)
Fundamentals of mechanics of machines
29(3)
Torque and power
29(1)
Simple gear trains
30(1)
Efficiency of a gear train
30(1)
Equivalent moment of inertia
31(1)
Mechanical characteristics of machines
31(1)
Torque balance equation
32(1)
Evaluation of cost of a PM motor
32(11)
Numerical examples
35(8)
Permanent Magnet Materials and Circuits
43(44)
Demagnetization curve and magnetic parameters
43(6)
Early history of permanent magnets
49(1)
Properties of permanent magnets
50(8)
Alnico
51(1)
Ferrites
51(1)
Rare-earth permanent magnets
52(6)
Approximation of demagnetization curve and recoil line
58(2)
Operating diagram
60(8)
Construction of the operating diagram
60(3)
Operating point for magnetization without armature
63(3)
Operating point for magnetization with armature
66(1)
Magnets with different demagnetization curves
67(1)
Permeances for main and leakage fluxes
68(9)
Permeance evaluation by flux plotting
68(1)
Permeance evaluation by dividing the magnetic field into simple solids
69(7)
Calculation of leakage permeances for prisms and cylinders located in an open space
76(1)
Calculation of magnetic circuits with permanent magnets
77(10)
Numerical examples
78(9)
Finite Element Analysis
87(32)
Δ (del) operator
87(2)
Biot-Savart, Faraday's, and Gauss's laws
89(2)
Biot-Savart law
89(1)
Faraday's law
90(1)
Gauss's law
90(1)
Gauss's theorem
91(1)
Stokes' theorem
91(1)
Maxwell's equations
91(3)
First Maxwell's equation
91(1)
Second Maxwell's equation
92(1)
Third Maxwell's equation
93(1)
Fourth Maxwell's equation
93(1)
Magnetic vector potential
94(1)
Energy functionals
95(2)
Finite element formulation
97(4)
Boundary conditions
101(1)
Dirichlet boundary conditions
101(1)
Neumann boundary conditions
101(1)
Interconnection boundary conditions
102(1)
Mesh generation
102(1)
Forces and torques in electromagnetic field
103(2)
Maxwell stress tensor
103(1)
Co-energy method
104(1)
Lorentz force theorem
105(1)
Inductances
105(5)
Definitions
105(1)
Dynamic inductances
106(1)
Steady-state inductance
107(1)
Reactances of synchronous machines
107(1)
Synchronous reactances
108(1)
Armature reaction reactances
109(1)
Leakage reactance
110(1)
Interactive FEM programs
110(9)
Pre-processor
111(1)
Solver
111(1)
Post-processor
112(1)
Numerical examples
112(7)
d.c. Commutator Motors
119(50)
Construction
119(8)
Slotted-rotor PM d.c. motors
123(1)
Slotless-rotor PM motors
124(1)
Moving-coil cylindrical motors
124(3)
Disk motors
127(1)
Fundamental equations
127(7)
Terminal voltage
127(1)
Armature winding EMF
128(1)
Electromagnetic (developed) torque
129(1)
Electromagnetic power
129(1)
Rotor and commutator linear speed
129(1)
Input and output power
130(1)
Losses
130(2)
Pole pitch
132(1)
Air gap magnetic flux density
132(1)
Armature line current density
132(1)
Armature winding current density
133(1)
Armature winding resistance
133(1)
Armature winding inductance
134(1)
Mechanical time constant
134(1)
Sizing procedure
134(2)
Armature reaction
136(7)
Commutation
143(3)
Starting
146(1)
Speed control
147(3)
Armature terminal-voltage speed control
148(1)
Armature rheostat speed control
148(1)
Shunt-field control
149(1)
Chopper variable-voltage speed control
149(1)
Magnetic circuit
150(5)
MMF per pole
151(1)
Air gap permeance
151(1)
Leakage permeances
152(3)
Applications
155(14)
Toys
155(1)
Car starters
155(1)
Underwater vehicles
156(3)
Linear actuators
159(1)
Wheelchairs
159(3)
Numerical examples
162(7)
Theory of Permanent Magnet Synchronous Motors
169(58)
Construction
169(1)
Fundamental relationships
170(9)
Speed
170(1)
Air gap magnetic flux density
170(2)
Voltage induced (EMF)
172(1)
Armature line current density
173(1)
Electromagnetic power
174(1)
Synchronous reactance
174(1)
Subtransient synchronous reactance
174(1)
Transient synchronous reactance
175(1)
Electromagnetic (developed) torque
175(1)
Form factor of the excitation field
176(1)
Form factors of the armature reaction
177(1)
Reaction factor
178(1)
Equivalent field MMF
178(1)
Armature reaction reactance
178(1)
Phasor diagram
179(6)
Characteristics
185(1)
Starting
186(1)
Starting by means of an auxiliary motor
186(1)
Frequency-change starting
186(1)
Asynchronous starting
186(1)
Reactances
186(7)
Analytical approach
187(4)
FEM
191(1)
Experimental method
191(2)
Rotor configurations
193(3)
Merrill's rotor
193(1)
Interior-type PM motors
193(1)
Surface PM motors
194(1)
Inset-type PM rotor
194(1)
Buried PM motors
194(2)
Comparison between synchronous and induction motors
196(3)
Sizing procedure: and main dimensions
199(2)
Performance calculation
201(1)
Dynamic model of a PM motor
202(3)
Noise and vibration of electromagnetic origin
205(6)
Radial forces
205(4)
Deformation of the stator core
209(1)
Natural frequencies of the stator
210(1)
Applications
211(16)
Open loop control
211(1)
High-performance closed loop control
212(1)
High-performance adaptive fuzzy control
213(1)
Numerical examples
213(14)
d.c. Brushless Motors
227(84)
Fundamental equations
227(3)
Terminal voltage
227(1)
Instantaneous current
228(1)
EMF
228(1)
Electromagnetic torque
229(1)
Electromagnetic torque of a synchronous motor
229(1)
Electromagnetic torque of a PM brushless d.c. motor
229(1)
Linear and rotational speed of brushless motors
230(1)
Commutation of PM brushless motors
230(5)
Half-wave sinusoidal operation
230(1)
Full-wave operation
231(4)
EMF and torque of PM brushless motors
235(5)
Synchronous motor
235(3)
PM d.c. brushless motors
238(2)
Torque--speed characteristics
240(3)
Winding losses
243(2)
Torque ripple
245(16)
Sources of torque pulsations
246(1)
Numerical methods of instantaneous torque calculation
247(1)
Analytical methods of instantaneous torque calculation
247(11)
Minimization of torque ripple
258(3)
Rotor position sensing of d.c. brushless motors
261(7)
Hall sensors
261(3)
Encoders
264(2)
Resolvers
266(2)
Sensorless motors
268(2)
Motion Control of PM brushless motors
270(6)
Converter fed motors
270(1)
Servo amplifiers
271(2)
Microcontrollers
273(2)
DSP control
275(1)
Universal brushless motors
276(7)
Smart motors
283(1)
Applications of d.c. brushless motors
284(27)
Electric vehicles
284(2)
Variable-speed fans
286(1)
Computer disk drives
286(2)
Record players
288(1)
CD players and CD ROMs
288(3)
Factory automation
291(4)
X-Y tables
295(1)
Sheep shearing handpieces
295(1)
High-speed aerospace drives
296(1)
Space mission tools
297(1)
Numerical examples
298(13)
Axial Flux Motors
311(42)
Double-sided motor with internal PM disk rotor
314(4)
Stator core
314(2)
Main dimensions
316(2)
Double-sided motor with one stator
318(4)
Single-sided motors
322(2)
Ironless double-sided motors
324(5)
Multidisk motors
329(4)
Applications
333(20)
Electric vehicles
333(1)
Gearless elevator propulsion system
334(1)
Propulsion of unmanned submarines
335(1)
Counterrotating rotor ship propulsion system
336(1)
Numerical examples
337(16)
High Power Density Brushless Motors
353(66)
Design considerations
353(2)
Requirements
355(1)
Multiphase motors
356(3)
Surface PM versus salient-pole rotor
359(1)
Electromagnetic effects
360(6)
Armature reaction
360(1)
Damper
361(2)
Winding losses in large motors
363(2)
Minimization of losses
365(1)
Cooling
365(1)
Corrosion of PMs
366(1)
Construction of motors with cylindrical rotors
366(10)
Motor with reduced armature reaction
368(1)
Motors with modular stators
369(4)
Study of large PM motors with different rotor configurations
373(3)
Construction of motors with disk rotors
376(3)
Transverse flux motors
379(8)
Principle of operation
379(2)
EMF and electromagnetic torque
381(2)
Armature winding resistance
383(1)
Armature reaction and leakage reactance
384(2)
Magnetic circuit
386(1)
Advantages and disadvantages
387(1)
Applications
387(32)
Ship propulsion
387(4)
Submarine propulsion
391(1)
Hybrid electric transit bus
391(4)
Light rail system
395(4)
Numerical examples
399(20)
Brushless Motors of Special Construction
419(34)
Single-phase motors
419(8)
Single-phase two-pole motors with nonuniform air gap
419(4)
Single-phase multi-pole motors with oscillatory starting
423(2)
Single-phase converter-fed PM brushless motors
425(2)
Micromachine world
427(2)
Permanent magnet micromotors
429(5)
Micromotors with planar coils
429(3)
Micromotors of cylindrical construction
432(2)
Actuators for automotive applications
434(1)
Integrated starter-generator
434(3)
Three-axis torque motor
437(1)
High speed synchronous motors
438(8)
Requirements
438(2)
Super high speed motors
440(1)
High speed motors with canned rotor
441(3)
High speed spindle drives
444(2)
Slotless motors
446(1)
Motors with imbricated rotors
447(6)
Numerical examples
447(6)
Stepping Motors
453(32)
Features of stepping motors
453(1)
Fundamental equations
454(1)
Step
454(1)
Steady-state torque
455(1)
Maximum synchronizing torque
455(1)
Frequency of the rotor oscillations
455(1)
PM stepping motors
455(3)
Reluctance stepping motors
458(2)
Hybrid stepping motors
460(8)
Full stepping
461(2)
Half stepping
463(1)
Microstepping
464(1)
Practical hybrid motor
464(2)
Bipolar and unipolar motors
466(2)
Motion control of stepping motors
468(2)
PM stepping motors with rotor position transducers
470(1)
Single-phase stepping motors
471(1)
Torque and voltage equations
472(2)
Characteristics
474(2)
Torque-angle characteristics
474(1)
Torque-current characteristics
475(1)
Torque-frequency characteristics
475(1)
Applications
476(9)
Numerical examples
479(6)
Optimization
485(20)
Mathematical formulation of optimization problem
486(1)
Non-linear programming methods
487(4)
Direct search methods
487(2)
Stochastic methods
489(1)
Gradient methods
489(1)
Constrained optimization techniques
490(1)
Population-based incremental learning
491(1)
Response surface methodology
492(3)
Response surface designs
494(1)
Estimation of errors in response surface fitting
494(1)
Modern approach to optimization of PM motors
495(10)
PM d.c. commutator motors
496(1)
PM synchronous motors
497(1)
Numerical examples
498(7)
Maintenance
505(52)
Basic requirements to electric motors
505(1)
Reliability
506(2)
Failures of electric motors
508(3)
Calculation of reliability of small PM brushless motors
511(3)
Vibration and noise
514(8)
Generation and radiation of sound
515(3)
Mechanical model
518(1)
Electromagnetic vibration and noise
519(1)
Mechanical vibration and noise
520(1)
Aerodynamic noise
520(1)
d.c. commutator motors
521(1)
Synchronous motors
521(1)
Reduction of noise
522(1)
Condition monitoring
522(3)
Protection
525(4)
Electromagnetic and radio frequency interference
529(6)
Commutator motors
530(3)
Electronically commutated brushless motors
533(2)
Lubrication
535(10)
Bearings
535(1)
Lubrication of rolling bearings
535(2)
Lubrication of porous metal bearings
537(2)
Numerical examples
539(6)
Appendixes
A Leakage Inductance of a.c. Motors
545(6)
A.1 Slot leakage permeance
545(2)
A.2 End connection leakage permeance
547(1)
A.3 Differential leakage permeance
548(1)
A.4 Tooth-top leakage permeance
548(1)
A.5 Leakage reactance per phase
549(2)
B Losses in a.c. Motors
551(6)
B.1 Armature winding losses
551(2)
B.2 Armature core losses
553(1)
B.3 Rotor core losses
553(1)
B.4 Core loss finite element model
554(1)
B.5 Stray losses
554(1)
B.6 Rotational losses
555(1)
B.7 Losses in rotor can
556(1)
B.8 Losses for nonsinusoidal current
556(1)
Symbols and Abbreviations 557(8)
Bibliography 565(18)
Index 583