Introduction to Quantum Photonics
PART I: FUNDAMENTALS OF QUANTUM TECHNOLOGIES
The second quantum revolution: from basic concepts to quantum technologies
Solid state quantum emitters
Single photon sources for multi-photon applications
Quantum Key Distribution Protocols
From basic science to technological development: the case for two avenues
Quantum Networks in Space
PART II: ATOMS, IONS, AND MOLECULES: FROM EXPERIMENTAL TECHNIQUES TO RECENT PROGRESS
Fluorescence spectroscopy in planar dielectric and metallic systems
Single Trapped Neutral Atoms in Optical Lattices
Long Distance Entanglement of Atomic Qubits
Collective Light emission of ion crystals in correlated Dicke states
Single Molecule Magnets Spin Devices
Molecular-ion quantum technologies
Optical atomic clocks
PART III: SPIN QUBITS AND QUANTUM MEMORIES: FROM SPIN PROPERTIES TO PHYSICAL REALIZATIONS
Coherent Spin Dynamics of Colloidal Nanocrystals
Relaxation of Electron and Hole Spin Qubits in III-V Quantum Dots
Ensemble-Based Quantum Memory: Principle, Advance, and Application
PART IV: SOLID-STATE AND VAN DER WAALS MATERIAL PLATFORMS: FROM SINGLE QUANTUM EMITTERS TO HYBRID INTEGRATION
Telecom wavelengths InP-based quantum dots for quantum communication
Quantum Optics with Solid-State Colour Centres
Quantum photonics with 2D semiconductors
Nano-opto-electro-mechanical systems for integrated quantum photonics
Silicon Quantum Photonics Platform
PART V: EMERGING QUANTUM TECHNOLOGIES: CHALLENGES AND POTENTIAL APPLICATIONS
Photonic realization of qubit quantum computing
Fiber-Based Quantum Repeaters
Long-distance satellite-based quantum communication
Quantum Communication Networks for 6G