Muutke küpsiste eelistusi

Photonic Signal Processing, Second Edition: Techniques and Applications 2nd edition [Kõva köide]

(Huawei Technologies Co., Ltd., European Research Center, Munich, Germany)
  • Formaat: Hardback, 506 pages, kõrgus x laius: 254x178 mm, kaal: 979 g, 42 Tables, black and white; 200 Illustrations, black and white
  • Sari: Optical Science and Engineering
  • Ilmumisaeg: 13-Dec-2018
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1498769934
  • ISBN-13: 9781498769938
  • Formaat: Hardback, 506 pages, kõrgus x laius: 254x178 mm, kaal: 979 g, 42 Tables, black and white; 200 Illustrations, black and white
  • Sari: Optical Science and Engineering
  • Ilmumisaeg: 13-Dec-2018
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1498769934
  • ISBN-13: 9781498769938
This Second Edition of "Photonic Signal Processing" updates most recent R&D on processing techniques of signals in photonic domain from the fundamentals given in its first edition. Several modern techniques in Photonic Signal Processing (PSP) are described:











Graphical signal flow technique to simplify the analysis of the photonic transfer functions, plus its insights into the physical phenomena of such processors. The resonance and interference of optical fields are presented by the poles and zeros of the optical circuits, respectively.





Detailed design procedures for fixed and tunable optical filters. These filters, "brick-wall-like", now play a highly important role in ultra-broadband (100GBaud) to spectral shaping of sinc temporal response so as to generate truly Nyquist sampler of the received eye diagrams





3-D PSP allows multi-dimensional processing for highly complex optical signals





Photonic differentiators and integrators for dark soliton generations.





Optical dispersion compensating processors for ultra-long haul optical transmission systems.





Some optical devices essentials for PSP.





Many detailed PSP techniques are given in the chapters of this Second Edition.
Preface xvii
Author xix
Chapter 1 Introduction 1(6)
Acronyms
1(1)
1.1 Preamble
1(1)
1.2 Introductory Remarks
2(2)
1.3 Organization of
Chapters
4(3)
Chapter 2 Photonic Signal Processing Via Signal-Flow Graph 7(64)
2.1 Introduction
7(1)
2.2 Incoherent Photonic Signal Processing
8(4)
2.2.1 Fiber-Optic Delay Lines
10(1)
2.2.1.1 Fiber-Optic Directional Couplers
10(1)
2.2.2 Fiber-Optic and Semiconductor Amplifiers
11(1)
2.3 Coherent Integrated-Optic Signal Processing
12(7)
2.3.1 Integrated-Optic Delay Lines
15(1)
2.3.2 Integrated-Optic Phase Shifters
16(1)
2.3.3 Integrated-Optic Directional Couplers
16(2)
2.3.4 Integrated-Optic Amplifiers
18(1)
2.4 Remarks
19(1)
2.5 Signal-Flow Graph Approach and Photonic Circuits
20(3)
2.5.1 Introductory Remarks
21(1)
2.5.2 Signal-Flow Graph Theory
21(1)
2.5.3 Definitions of SFG Elements
22(1)
2.6 Rules of SFG
23(2)
2.6.1 Rule 1: Transmission Rule
23(1)
2.6.2 Rule 2: Addition Rule
23(1)
2.6.3 Rule 3: Product Rule
24(1)
2.7 Mason's Gain Formula
25(6)
2.7.1 Analysis of an Incoherent Recursive Fiber-Optic Signal Processor (RFOSP)
25(1)
2.7.2 SFG Representation of the Incoherent RFOSP
25(2)
2.7.3 Derivation of the Transfer Functions of the Incoherent RFOSP
27(2)
2.7.4 Stability Analysis of the Incoherent RFOSP
29(1)
2.7.5 Design of the Incoherent RFOSP
29(1)
2.7.6 Remarks
30(1)
2.8 Optmason: A Program for Automatic Derivation of the Optical Transfer Functions of Photonic Circuits from Their Connection Graphs
31(9)
2.8.1 Overview
31(2)
2.8.2 Using OPTMASON
33(2)
2.8.3 Contents of the Input File for above Examples
35(1)
2.8.4 The OPTMASON Program Structure
36(4)
2.9 Appendix: Z-Transform
40(2)
2.10 Appendix: OPTMASON.PAS Program Listing
42(24)
2.11 Appendix: Using "OPTIMASON" the Computer Aided Generator
66(5)
Chapter 3 Bandpass Optical Filters by DSP Techniques 71(36)
3.1 Optical Fixed Bandpass Filter
71(13)
3.1.1 Introductory Remarks
71(1)
3.1.2 Chebyshev Optical Filter Specification and Synthesis Algorithm
71(1)
3.1.3 Basic Characteristics of Chebyshev Lowpass Filters
72(11)
3.1.3.1 Chebyshev-Type Optical Bandpass Filter Specification
72(2)
3.1.3.2 Illustration of a Chebyshev Bandpass Optical Filter
74(1)
3.1.3.3 Optical Components for Chebyshev Filters
75(3)
3.1.3.4 Realization of the Chebyshev Optical Bandpass Filters
78(1)
3.1.3.5 The COF1
78(1)
3.1.3.6 Parallel Realization
79(2)
3.1.3.7 The COF2
81(2)
3.1.3.8 Discussions
83(1)
3.1.4 Concluding Remarks
83(1)
3.2 Tunable Optical Bandpass Waveguide Filters
84(21)
3.2.1 Introductory Remarks
84(1)
3.2.2 Transfer Function of IIR Digital Filters to Be Synthesized
85(1)
3.2.3 Basic Building Blocks of Tunable Optical Filters
86(5)
3.2.3.1 Tunable Coupler
86(1)
3.2.3.2 All-Pole Filter
87(2)
3.2.3.3 All-Zero Filter
89(2)
3.2.4 Tunable Optical Filter
91(1)
3.2.5 Synthesis of Tunable Optical Filters
91(7)
3.2.5.1 Design Equations for the Synthesis of Tunable Optical Filters
91(1)
3.2.5.2 Synthesis of Second-Order Butterworth Bandpass and Bandstop Tunable Optical Filters
92(1)
3.2.5.3 Designed Parameter Values of the Bandpass and Bandstop Tunable Optical Filters
92(2)
3.2.5.4 Tuning Parameters of the Synthesized Bandpass and Bandstop Tunable Optical Filters
94(4)
3.2.6 Synthesis of Bandpass and Bandstop Tunable Optical Filters with Variable Bandwidths and Fixed Center Frequencies
98(6)
3.2.6.1 Synthesis of Tunable Optical Filters with Fixed Bandwidths and Tunable Center Frequencies
98(2)
3.2.6.2 Fabrication Tolerances of Filter Parameters
100(4)
3.2.7 Concluding Remarks
104(1)
References
105(2)
Chapter 4 Photonic Computing Processors 107(60)
4.1 Incoherent Fiber-Optic Systolic Array Processors
107(18)
4.1.1 Introduction
107(2)
4.1.2 Digital-Multiplication-by-Analog-Convolution Algorithm and Its Extended Version
109(4)
4.1.2.1 Multiplication of Two Digital Numbers
109(1)
4.1.2.2 High-Order Digital Multiplication
110(2)
4.1.2.3 Sum of Products of Two Digital Numbers
112(1)
4.1.2.4 Two's Complement Binary Arithmetic
112(1)
4.1.3 Elemental Optical Signal Processors
113(3)
4.1.3.1 Optical Splitter and Combiner
113(1)
4.1.3.2 Binary Programmable Incoherent Fiber-Optic Transversal Filter
114(2)
4.1.4 Incoherent Fiber-Optic Systolic Array Processors for Digital Matrix Multiplications
116(8)
4.1.4.1 Matrix-Vector Multiplication
116(1)
4.1.4.2 Matrix-Matrix Multiplication
117(1)
4.1.4.3 Cascaded Matrix Multiplication
118(3)
4.1.4.4 Performance Comparison
121(1)
4.1.4.5 Fiber-Optic Systolic Array Processors Using Non-Binary Data
122(1)
4.1.4.6 High-Order Fiber-Optic Systolic Array Processors
123(1)
4.1.5 Remarks
124(1)
4.2 Programmable Incoherent Newton-Cotes Optical Integrator
125(18)
4.2.1 Introductory Remarks
125(1)
4.2.2 Newton-Cotes Digital Integrators
126(17)
4.2.2.1 Transfer Function
126(1)
4.2.2.2 Synthesis
127(3)
4.2.2.3 Design of a Programmable Optical Integrating Processor
130(2)
4.2.2.4 Analysis of the FIR Fiber-Optic Signal Processor
132(1)
4.2.2.5 Analysis of the IIR Fiber-Optic Signal Processor
133(10)
4.2.3 Section Remarks
143(1)
4.3 Higher-Derivative FIR Optical Differentiators
143(17)
4.3.1 Introduction
144(2)
4.3.2 Higher-Derivative FIR Digital Differentiators
146(1)
4.3.3 Synthesis of Higher-Derivative FIR Optical Differentiators
147(3)
4.3.4 Computed Differentiators of First and Higher Orders
150(9)
4.3.4.1 First-Derivative Differentiators
150(2)
4.3.4.2 Second-Derivative Differentiators
152(2)
4.3.4.3 Third-Derivative Differentiators
154(4)
4.3.4.4 Fourth-Derivative Differentiator
158(1)
4.3.5 Remarks
159(1)
4.4 Appendix A: Generalized Theory of the Newton-Cotes Digital Integrators
160(7)
4.4.1 Definition of Numerical Integration
161(1)
4.4.2 Newton's Interpolating Polynomial
162(2)
4.4.3 General Form of the Newton-Cotes Closed Integration Formulas
164(1)
4.4.4 Generalized Theory of the Newton-Cotes Digital Integrators
164(3)
Chapter 5 Optical Dispersion Compensation and Gain Flattening 167(78)
5.1 Introductory Remarks
167(1)
5.2 Dispersion Compensation Using Optical Resonators
167(53)
5.2.1 Signal-Flow Graph Application in Optical Resonators
170(5)
5.2.2 Stability Test
175(1)
5.2.3 Frequency and Impulse Responses
176(2)
5.2.3.1 Frequency Response
176(1)
5.2.3.2 Impulse and Pulse Responses
177(1)
5.2.3.3 Cascade Networks
178(1)
5.2.3.4 Circuits with Bi-directional Flow Path
178(1)
5.2.3.5 Remarks
178(1)
5.2.4 Double-Coupler Double-Ring Circuit Under Temporal Incoherent Condition
178(21)
5.2.4.1 Transfer Function of the DCDR Circuit
178(3)
5.2.4.2 Circulating-Input Intensity Transfer Functions
181(1)
5.2.4.3 Analysis
182(17)
5.2.5 DCDR Under Coherence Operation
199(10)
5.2.5.1 Field Analysis of the DCDR Circuit
199(1)
5.2.5.2 Output-Input Field Transfer Function
200(1)
5.2.5.3 Circulating to Input Field Transfer Functions
200(1)
5.2.5.4 Resonance of the DCDR Circuit
201(3)
5.2.5.5 Transient Response of the DCDR Circuit
204(5)
5.2.6 DCDR Resonator as a Dispersion Equalizer: Group Delay and Dispersion
209(11)
5.3 Optical Eigenfilter as Dispersion Compensators
220(18)
5.3.1 Introductory Remarks
220(2)
5.3.2 Formulation and Design
222(5)
5.3.2.1 Dispersive Optical Fiber Channel
222(1)
5.3.2.2 Formulation of Optical Dispersion Eigencompensation
223(1)
5.3.2.3 Design and IM/DD System Performance
224(2)
5.3.2.4 Performance Comparison of Eigenfilter and Chebyshev Filter Techniques
226(1)
5.3.3 Synthesis of Optical Dispersion Eigencompensators
227(11)
5.3.3.1 IM/DD Transmission System Model
228(3)
5.3.3.2 Performance Comparison of Optical Dispersion Eigencompensator and Chebyshev Optical Equalizer
231(3)
5.3.3.3 Eigencompensated System with Parameter Deviations of the Optical Dispersion Eigencompensator
234(1)
5.3.3.4 Trade-Off Between Transmission Distance and Eigenfilter Bandwidth
235(1)
5.3.3.5 Compensation Power of Eigencompensating Technique
236(2)
5.3.3.6 Remarks
238(1)
5.4 Photonic Functional Devices
238(7)
5.4.1 Preamble
238(1)
5.4.2 Optical Dispersion Compensation Module (oDCM)
239(1)
5.4.3 Chromatic Dispersion Compensators
240(2)
5.4.4 Optical Gain Equalizer
242(7)
5.4.4.1 Introductory Remarks
242(1)
5.4.4.2 Dynamic Gain Equalizer
243(2)
Chapter 6 Optical Dispersion in Guided-Wave FIR and IIR Structures 245(38)
6.1 Preamble/Introduction
246(1)
6.2 Dispersion Mechanism in Fiber and Waveguide
247(2)
6.3 Micro-Ring Resonator (MRR) as an Optical Dispersion Compensator (oDCM)
249(6)
6.3.1 Why Resonator?
249(1)
6.3.2 Transfer Transmittance Function of the Thru Port (Notched Resonant Filter) and Drop Port (Bandpass Filter)
250(3)
6.3.2.1 Dispersion Characteristics and Dispersion Compensation by MRR
250(1)
6.3.2.2 Dispersion Compensating of Multiple DWDM Channels and Slope Dispersion Compensation
251(2)
6.3.3 Tunable Dispersion Compensator
253(1)
6.3.4 Length of Fiber Propagation and Dispersion Compensating Module
254(1)
6.3.5 Waveguide and Passive MRR Fabrication Technology for oDCM
255(1)
6.4 Active MRR
255(1)
6.4.1 Structure
255(1)
6.5 oDCM by Fiber Bragg Grating
256(9)
6.5.1 Motivation
256(1)
6.5.2 Analytical Expression of Broadening (Fiber) and Compression (TM-FBG) Factors
257(3)
6.5.2.1 Dispersion-Induced Pulse Broadening in Optical Fiber
257(1)
6.5.2.2 Dispersion-Induced Pulse Broadening in FBG
257(3)
6.5.3 Design Cases
260(5)
6.5.3.1 Design Case I: Finite Uniform Profile Grating
260(3)
6.5.3.2 Design Case II: Apodized Profile Grating
263(1)
6.5.3.3 Remarks on FBG-oDCM
264(1)
6.6 FIR Discrete Wavelet Transform 2D Dispersion Compensating
265(9)
6.6.1 Introductory Remarks
265(1)
6.6.2 Analysis and Synthesis
265(3)
6.6.3 Design Procedures
268(2)
6.6.4 Implementation
270(4)
6.7 Concluding Remarks
274(1)
6.8 Appendix: Dispersion Compensation a Historical View of Development and Why MRR as DCM
274(2)
6.9 SFG and Mason Rules for Photonic Circuit Analysis
276(7)
6.9.1 SFG and Mason Approach
276(2)
6.9.2 The Gain Formula
278(1)
6.9.2.1 Procedure
278(1)
6.9.3 Derivation of Transfer Function of the Micro-Ring Resonator
278(5)
6.9.3.1 Single Ring
278(2)
6.9.3.2 MRR Incorporating MZDI Structure
280(3)
Chapter 7 Photonic Ultra-Short Pulse Generators 283(58)
7.1 Optical Dark-Soliton Generator and Detectors
283(14)
7.1.1 Introduction
283(2)
7.1.2 Optical Fiber Propagation Model
285(1)
7.1.3 Design and Performance of Optical Dark-Soliton Detectors
286(1)
7.1.4 Design of Optical Dark-Soliton Detectors
286(1)
7.1.5 Performance of the Optical Differentiator
287(1)
7.1.6 Performance of the Butterworth LPOF
288(1)
7.1.7 Design of the Optical Dark-Soliton Generator
289(4)
7.1.7.1 Design of the Optical Integrator
289(2)
7.1.7.2 Design of an Optical Dark-Soliton Generator
291(2)
7.1.8 Performance of the Optical Dark-Soliton Generator and Detectors
293(4)
7.1.8.1 Performance of the Optical Dark-Soliton Generator
293(2)
7.1.8.2 Performance of the Combined Optical Dark-Soliton Generator and Optical Differentiator
295(1)
7.1.8.3 Performance of the Combined Optical Dark-Soliton Generator and Butterworth LPOF
295(2)
7.1.9 Remarks
297(1)
7.2 Mode-Locked Ultra-Short Pulse Generators
297(22)
7.2.1 Introductory Remarks on Regenerative Mode-Locked Fiber Laser Types
298(4)
7.2.2 Ultra-High Repetition-Rate Fiber Mode-Locked Lasers
302(3)
7.2.2.1 Mode-Locking Techniques and Conditions for Generation of Transform Limited Pulses from a Mode-Locked Laser
302(3)
7.2.3 MLL and MRLL Experimental Setup and Results
305(6)
7.2.3.1 40 GHz Regenerative Mode-Locked Laser
307(2)
7.2.3.2 Remarks
309(2)
7.2.4 Active Mode-Locked Fiber Ring Laser by Rational Harmonic Detuning
311(8)
7.2.4.1 Rational Harmonic Mode-Locking
311(1)
7.2.4.2 Experiment
312(1)
7.2.4.3 Phase Plane Analysis
313(3)
7.2.4.4 Results and Discussion
316(3)
7.2.4.5 Remarks
319(1)
7.3 Rep-Rate Multiplication Ring Laser Using Temporal Diffraction Effects
319(12)
7.3.1 GVD Repetition Rate Multiplication Technique
320(1)
7.3.2 Experiment Setup
321(1)
7.3.3 Phase Plane Analysis
322(6)
7.3.3.1 Uniform Lasing Mode Amplitude Distribution
322(6)
7.3.3.2 Gaussian Lasing Mode Amplitude Distribution
328(1)
7.3.3.3 Effects of Filter Bandwidth
328(1)
7.3.3.4 Nonlinear Effects.
328(1)
7.3.3.5 Noise Effects
328(1)
7.3.4 Demonstration
328(2)
7.3.5 Remarks
330(1)
7.4 Multi-Wavelength Fiber Ring Lasers
331(10)
7.4.1 Theory
331(2)
7.4.2 Experimental Results and Discussion
333(3)
7.4.3 Multi-wavelength Tunable Fiber Ring Lasers
336(2)
7.4.4 Remarks
338(3)
Chapter 8 Multi-Dimensional Photonic Processing by Discrete-Domain Approach 341(64)
8.1 Multi-Dimension (MULTI-D) PSP Design Techniques
341(18)
8.1.1 An Overview of Photonic Signal Processing
341(3)
8.1.1.1 Spatial and Temporal Approach
342(1)
8.1.1.2 Fiber-Optic or Integrated Optic Delay Line Approach
343(1)
8.1.1.3 Motivation
344(1)
8.1.2 Multi-Dimensional Signal Processing
344(4)
8.1.2.1 Multi-Dimensional Signal
344(1)
8.1.2.2 Discrete Domain Signals
345(1)
8.1.2.3 Multi-Dimensional Discrete Signal Processing
346(1)
8.1.2.4 Separability of 2-D Signals
346(1)
8.1.2.5 Separability of 2-D Signal Processing Operations
346(2)
8.1.3 Filter Design Methods for 2-D PSP
348(5)
8.1.3.1 2-D Filter Specifications
348(1)
8.1.3.2 Mathematical Model of 2-D Discrete Photonic Systems
348(4)
8.1.3.3 Filter Design Methods
352(1)
8.1.3.4 Use of Matrix Decomposition
352(1)
8.1.4 Direct 2-D Filter Design Methods
353(6)
8.1.4.1 FIR and IIR Structures in 2-D Signal Processing
353(1)
8.1.4.2 Frequency Sampling Method
354(2)
8.1.4.3 Windowing Method
356(1)
8.1.4.4 McClellan Transformation Method
356(1)
8.1.4.5 2-D Filter Design Using Transformation Method
357(2)
8.1.5 Concluding Remarks
359(1)
8.2 Decomposition Techniques and Implementation Using Fiber Optic Delay Lines
359(21)
8.2.1 Introductory Remarks
360(1)
8.2.2 Matrix Decomposition Methods
360(5)
8.2.2.1 Single-Stage Singular Value Decomposition
360(3)
8.2.2.2 Multiple-Stage Singular Value Decomposition
363(2)
8.2.3 Iterative Singular Value Decomposition
365(2)
8.2.3.1 Iterative Singular Value Decomposition
365(1)
8.2.3.2 A 2-D Filter Design Example Using Iterative Singular Value Decomposition
366(1)
8.2.4 Optimal Decomposition
367(2)
8.2.4.1 Optimal Decomposition
367(1)
8.2.4.2 Other 2-D Filter Design Methods Based on Matrix Decomposition
368(1)
8.2.5 2-D Filter Order Reduction Using Balanced Approximation Theory
369(5)
8.2.5.1 Motivation for Lower Order Photonic Filters
369(1)
8.2.5.2 Description of 2-D System in State-Space Format
369(1)
8.2.5.3 Balanced Approximation Method
369(3)
8.2.5.4 Filter Order Reduction Using Balanced Approximation: An Example
372(2)
8.2.6 Fiber-Optic Delay Line Filters
374(1)
8.2.7 Coherent and Incoherent Operation of Photonic Filters
374(1)
8.2.8 Using Optical Fibers to Realize Delayed Line Filter
375(4)
8.2.8.1 Photonic Realization of Delay
375(1)
8.2.8.2 Photonic Realization of Tab Coefficients
376(1)
8.2.8.3 Photonic Realization of Summer/Splitter
376(1)
8.2.8.4 Graphical Representation of Photonic Circuits
377(2)
8.2.8.5 Remarks
379(1)
8.2.9 Concluding Remarks
379(1)
8.3 Realization
380(23)
8.3.1 Introductory Remarks
380(1)
8.3.2 Photonic Implementation of 2-D Filters
381(12)
8.3.2.1 Photonic Filter Structures
381(1)
8.3.2.2 Coherent System
381(1)
8.3.2.3 2-D Direct Structure Filter
381(2)
8.3.2.4 2-D Separable Structure Filter
383(1)
8.3.2.5 Binary Tree Filter
384(1)
8.3.2.6 Photonic Transversal Filter
385(3)
8.3.2.7 1-D Direct Structure Photonic Filter
388(1)
8.3.2.8 Parallel Structure Filters
389(2)
8.3.2.9 Other 1-D Filter Structures
391(1)
8.3.2.10 Realization of Poles
392(1)
8.3.2.11 Remarks
393(1)
8.3.3 Design Chart and Discussions
393(14)
8.3.3.1 2-D Photonic Filter Design Flowchart
393(1)
8.3.3.2 Examples of Photonic 2-D PSP Implementation
393(3)
8.3.3.3 Separable Implementation Using Matrix Decomposition Methods
396(3)
8.3.3.4 Non-Separable Implementation Using Direct Methods
399(3)
8.3.3.5 Comparison of Matrix Decomposition Method Design and Direct Method Design
402(1)
8.4 Concluding Remarks
403(2)
Chapter 9 Generation and Photonic Processing of Radio Waves, Tera-Waves and Multi-Carrier Lightwaves 405(40)
9.1 Introduction
405(2)
9.2 Generation of Tera-Hz Waves
407(3)
9.2.1 Generation of Ultra-High Repetition Rate Pulse Trains
408(1)
9.2.2 Necessity of Highly Nonlinear Optical Waveguide Section for Tera-Hz Wave Ultra-High Speed Modulation
409(1)
9.3 Photonic Signal Processing of Radio Waves
410(23)
9.3.1 Generic Structures
412(1)
9.3.2 Polarization Dual-Mode Delay Processing Systems
413(3)
9.3.2.1 Tunable Radio Wave Processing Systems Using Differential Group Display Elements
413(3)
9.3.2.2 Tunable Multi-Tap Radio Wave Filters Using Higher Order Polarization Mode Dispersion Emulator
416(1)
9.3.3 Integrated Multi-Tap Delay Processing Systems
416(7)
9.3.3.1 Dual Tunable RW Filters Using Sagnac Loop and CFBGs
418(2)
9.3.3.2 Wavelength-Division Multiplexing (WDM) Multi-Tap Tunable Radio Wave Filters
420(3)
9.3.3.3 Remarks
423(1)
9.3.4 Buffered Delay Processing Systems
423(1)
9.3.5 Nonlinear Effects in Photonic Processing Systems of Radio Waves
424(6)
9.3.5.1 All Pass Interferometer as Radio Frequency Filter Banks
425(3)
9.3.5.2 Integrated Radio Frequency and Photonic on Chip
428(2)
9.3.6 Remarks on the Photonic Signal Processing of Radio Waves
430(3)
9.3.6.1 Challenges and Uniqueness of Photonic Processors
430(2)
9.3.6.2 Uniqueness of Tera-Hz Wave Generators
432(1)
9.4 Quantum Dot Solitonic Mode-Locked Comb Lasers
433(12)
9.4.1 Structure and Quantum Optical Gain Waveguide
433(5)
9.4.1.1 Quantum Dot Growth
434(1)
9.4.1.2 QD-BA and BU Structure
435(1)
9.4.1.3 Lasing in Initial State
436(1)
9.4.1.4 Mode Locking and Comb Spectrum Generation
437(1)
9.4.1.5 Absorption Section
438(1)
9.4.2 Performance
438(4)
9.4.2.1 Measurement Platform
438(2)
9.4.2.2 Relative Intensity Noise
440(1)
9.4.2.3 Linewidth of QD-MLL Generated Comb Laser
440(2)
9.4.3 Optical Frequency Comb in Multiple Radio Wave Channel ization
442(1)
9.4.4 Concluding Remarks on QD-MLL
443(2)
Chapter 10 Optical Devices for Photonic Signal Processing 445(56)
10.1 Optical Fiber Communications
445(1)
10.2 Photonic Signal Processors
446(10)
10.2.1 Photonic Signal Processing
446(1)
10.2.2 Some Processor Optical Components
446(6)
10.2.2.1 Optical Amplifiers
447(1)
10.2.2.2 Pumping Characteristics
448(1)
10.2.2.3 Gain Characteristics
449(3)
10.2.3 Noise Considerations of EDFAs and Impact on System Performance
452(4)
10.2.3.1 Noise Considerations
452(2)
10.2.3.2 Fiber Bragg Gratings
454(2)
10.3 Optical Modulators
456(39)
10.3.1 Introductory Remarks
456(1)
10.3.2 Lithium Niobate Optical Modulators
456(16)
10.3.2.1 Optical-Diffused Channel Waveguides
457(11)
10.3.2.2 Linear Electro-optic Effect
468(4)
10.3.3 Electro-absorption Modulators
472(10)
10.3.3.1 Electro-absorption Effects
472(3)
10.3.3.2 Rib Channel Waveguides
475(7)
10.3.4 Operational Principles and Transfer Characteristics
482(3)
10.3.4.1 Electro-optic Mach-Zehnder Interferometric Modulator
482(3)
10.3.5 Modulation Characteristics and Transfer Function
485(4)
10.3.5.1 Transfer Function
485(2)
10.3.5.2 Extinction Ratio for Large Signal Operation
487(1)
10.3.5.3 Small Signal Operation
488(1)
10.3.5.4 DC Bias Stability and Linearization
488(1)
10.3.6 Chirp in Modulators
489(3)
10.3.6.1 General Aspects
489(1)
10.3.6.2 Modulation Chirp
490(2)
10.3.7 Electro-opt ic Polymer Modulators
492(2)
10.3.8 Modulators for Photonic Signal Processing
494(1)
10.4 Remarks
495(1)
References
496(5)
Index 501
Le Nguyen Binh holds a B.Eng (Hons) and Ph.D from the University of Western Australia. He is currently a technical director at Huaweis European Research Centre in Munich, Germany, and has been awarded three Huawei Technologies Gold Medals for his work on advanced optical communication technologies. He was previously the chair of Commission D (Electronics and Photonics) of the National Committee for Radio Sciences of the Australian Academy of Sciences, and a professorial fellow at Nanyang Technological University, Christian-Albrechts-Universität zu Kiel, and various Australian universities. Widely published, Dr. Binh is the series editor of Photonics and Optics for CRC Press.