Muutke küpsiste eelistusi

Photonics: An Introduction 1st ed. 2016 [Kõva köide]

  • Formaat: Hardback, 444 pages, kõrgus x laius: 235x155 mm, kaal: 1053 g, 94 Illustrations, color; 160 Illustrations, black and white; XV, 444 p. 254 illus., 94 illus. in color., 1 Hardback
  • Ilmumisaeg: 16-Feb-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 331926074X
  • ISBN-13: 9783319260747
Teised raamatud teemal:
  • Kõva köide
  • Hind: 85,76 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 100,89 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 444 pages, kõrgus x laius: 235x155 mm, kaal: 1053 g, 94 Illustrations, color; 160 Illustrations, black and white; XV, 444 p. 254 illus., 94 illus. in color., 1 Hardback
  • Ilmumisaeg: 16-Feb-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 331926074X
  • ISBN-13: 9783319260747
Teised raamatud teemal:
This book provides a comprehensive introduction into photonics, from the electrodynamic and quantum mechanic fundamentals to the level of photonic components and building blocks such as lasers, amplifiers, modulators, waveguides, and detectors.
The book will serve both as textbook and as a reference work for the advanced student or scientist. Theoretical results are derived from basic principles with convenient, yet state-of-the-art mathematical tools, providing not only deeper understanding but also familiarization with formalisms used in the relevant technical literature and research articles. Among the subject matters treated are polarization optics, pulse and beam propagation, waveguides, light–matter interaction, stationary and transient behavior of lasers, semiconductor optics and lasers (including low-dimensional systems such as quantum wells), detector technology, photometry, and colorimetry. Nonlinear optics are elaborated comprehensively.
The book is intended for both students of physics and electronics and scientists and engineers in fields such as laser technology, optical communications, laser materials processing, and medical laser applications who wish to gain an in-depth understanding of photonics.
1 Electrodynamic Theory of Light
1(38)
1.1 The Electromagnetic Field
2(3)
1.2 Wave Equation
5(4)
1.2.1 Complex Wave Functions and Amplitudes
6(2)
1.2.2 Plane Waves
8(1)
1.3 Propagation Velocities
9(3)
1.3.1 Phase Velocity
9(1)
1.3.2 Group Velocity
10(1)
1.3.3 Beam Velocity*
11(1)
1.4 Energy Transport
12(6)
1.4.1 Average Energy Flux Density
13(1)
1.4.2 Energy Exchange Field/Matter
14(1)
1.4.3 Energy Transport: Plane Waves
15(3)
1.5 Polarization States
18(17)
1.5.1 Jones Formalism
19(2)
1.5.2 Polarization Optics
21(6)
1.5.3 Transformation of Jones Vectors and Matrices
27(3)
1.5.4 Elliptically Polarized States
30(2)
1.5.5 Poincare Sphere*
32(3)
1.6 Inhomogeneous Waves
35(1)
1.7 Summary
36(1)
1.8 Problems
37(2)
References and Suggested Reading
37(2)
2 Wave Propagation in Matter
39(62)
2.1 Transition Between Different Media
40(16)
2.1.1 Phase Matching at a Boundary
40(5)
2.1.2 Reflection and Transmission Coefficients
45(7)
2.1.3 Total Reflection
52(4)
2.2 Optical Properties of Isotropic Media
56(13)
2.2.1 Linear Oscillator Model
56(3)
2.2.2 Absorption and Reflection
59(3)
2.2.3 Free Electron Gas Model of Metals
62(4)
2.2.4 Kramers--Kronig Relations
66(3)
2.3 Wave Propagation in Anisotropic Media
69(21)
2.3.1 Symmetry Properties of Crystals
70(4)
2.3.2 Propagation Along the Principal Axes
74(1)
2.3.3 Propagation in Arbitrary Directions*
75(11)
2.3.4 Electro-Optic Devices
86(2)
2.3.5 Liquid Crystal Devices
88(2)
2.4 Other Propagation Effects
90(8)
2.4.1 Optical Activity
90(2)
2.4.2 Magneto-Optic Faraday Effect
92(3)
2.4.3 Wave Propagation in Moving Media*
95(3)
2.5 Summary
98(1)
2.6 Problems
99(2)
References and Suggested Reading
100(1)
3 Optical Beams and Pulses
101(56)
3.1 Beam Propagation
101(35)
3.1.1 Paraxial Wave Equation
101(1)
3.1.2 Gaussian Beams
102(8)
3.1.3 Optical Components and Gaussian Beams
110(7)
3.1.4 ABCD-Transformation of Gaussian Beams
117(9)
3.1.5 Hermite--Gaussian Beams
126(2)
3.1.6 Fourier Optical Treatment of Beam Propagation
128(8)
3.2 Pulse Propagation
136(18)
3.2.1 Dispersive Propagation Effects
137(11)
3.2.2 Nonlinear Propagation Effects
148(6)
3.3 Summary
154(1)
3.4 Problems
155(2)
References and Suggested Reading
156(1)
4 Optical Interference
157(40)
4.1 Two Field Interference
157(10)
4.1.1 Michelson Interferometer
158(4)
4.1.2 Mach--Zehnder and Sagnac Interferometers
162(1)
4.1.3 S--Matrix
162(3)
4.1.4 Young's Double Slit
165(2)
4.2 Multiple Wave Interference
167(13)
4.2.1 Optical Gratings
168(2)
4.2.2 Dielectric Multilayer Systems
170(7)
4.2.3 Fabry--Perot Interferometer
177(3)
4.3 Resonators
180(9)
4.3.1 Spherical Mirror Resonators
182(5)
4.3.2 3D Resonators
187(2)
4.4 Coherence*
189(5)
4.4.1 Temporal Coherence
189(4)
4.4.2 Spatial Coherence
193(1)
4.5 Summary
194(1)
4.6 Problems
195(2)
References and Suggested Reading
196(1)
5 Dielectric Waveguides
197(48)
5.1 Planar Waveguides
197(8)
5.1.1 Eigenmodes
199(4)
5.1.2 Transverse Mode Profile
203(1)
5.1.3 Waveguide Dispersion
204(1)
5.2 Fiber Waveguides
205(13)
5.2.1 Step Index Fibers
206(6)
5.2.2 Fiber Losses and Dispersion
212(4)
5.2.3 Gradient Index Fibers
216(2)
5.3 Integrated Optics
218(24)
5.3.1 Waveguide Couplers
219(3)
5.3.2 Splitters and Switches
222(5)
5.3.3 Waveguide Gratings
227(10)
5.3.4 Waveguide-Interferometers and Modulators
237(3)
5.3.5 Active Waveguide Components
240(1)
5.3.6 Photonic Band Gap Fibers
241(1)
5.4 Summary
242(1)
5.5 Problems
243(2)
References and Suggested Reading
244(1)
6 Light--Matter Interaction
245(52)
6.1 Optical Interactions with Two Level Systems
245(22)
6.1.1 Perturbations
247(6)
6.1.2 Absorption and Stimulated Emission
253(3)
6.1.3 Spontaneous Emission
256(3)
6.1.4 Line Broadening
259(5)
6.1.5 Saturation of Absorption
264(3)
6.2 Light Amplification by Stimulated Emission
267(8)
6.2.1 Four-Level Amplifier
269(2)
6.2.2 Three-Level Amplifier
271(1)
6.2.3 Pulse Amplification and Absorption
272(3)
6.3 Optical Interactions with Semiconductors
275(19)
6.3.1 Electronic States in Semiconductors
275(8)
6.3.2 Optical Transitions in Semiconductors
283(4)
6.3.3 Optical Gain Condition
287(1)
6.3.4 Low Dimensional Semiconductors
288(5)
6.3.5 Carrier Induced Refractive Index Change
293(1)
6.4 Summary
294(1)
6.5 Problems
295(2)
References and Suggested Reading
296(1)
7 Optical Oscillators
297(54)
7.1 Stationary Performance
297(8)
7.1.1 Rate Equations, Four-Level System
297(3)
7.1.2 Laser Output Characteristic
300(4)
7.1.3 Three-Level Laser
304(1)
7.2 Frequency and Time Behavior of Lasers
305(8)
7.2.1 Multi-Line vs. Single Line Operation
305(2)
7.2.2 Mode Selection
307(2)
7.2.3 Laser Line Width
309(1)
7.2.4 Relaxation Oscillations and Gain Modulation
309(4)
7.3 Pulsed Lasers
313(10)
7.3.1 Q-Switching
314(4)
7.3.2 Mode Locking
318(4)
7.3.3 Carrier Envelope Phase, CEP
322(1)
7.4 Atomic and Molecular Lasers
323(8)
7.4.1 Atomic Solid State Lasers
325(3)
7.4.2 Gas Lasers
328(3)
7.5 Semiconductor Lasers
331(9)
7.5.1 Heterostructure Lasers
334(2)
7.5.2 Quantum Well Lasers
336(1)
7.5.3 Performance and Technology
336(4)
7.6 Free Electron Lasers*
340(8)
7.6.1 "Spontaneous" Emission
342(2)
7.6.2 Light-Electron Coupling and Amplification
344(4)
7.7 Summary
348(1)
7.8 Problems
349(2)
References and Suggested Reading
350(1)
8 Nonlinear Optics and Acousto-Optics
351(62)
8.1 Nonlinear Susceptibility
351(9)
8.1.1 Frequency Mixing
353(5)
8.1.2 Anharmonic Oscillator
358(2)
8.2 Second Order Processes
360(19)
8.2.1 Second Harmonic Generation
360(5)
8.2.2 Phase Matching
365(4)
8.2.3 Optical Parametric Amplification
369(7)
8.2.4 Parametric Frequency Conversion*
376(1)
8.2.5 Second Order Autocorrelation
377(2)
8.3 Third Order Processes
379(20)
8.3.1 Third Harmonic Generation
379(1)
8.3.2 Optical Kerr Effect
380(4)
8.3.3 Third Order Parametric Amplification
384(3)
8.3.4 Two-Photon Absorption
387(1)
8.3.5 Raman Amplification
388(4)
8.3.6 Brillouin Amplification
392(3)
8.3.7 Phase Conjugation*
395(4)
8.4 Electro-Optic Effects
399(4)
8.4.1 Linear Electro-Optic Effect
400(2)
8.4.2 Quadratic Electro-Optic Effect
402(1)
8.4.3 Field Induced Second Harmonic Generation*
403(1)
8.5 Acousto-Optics
403(7)
8.5.1 Light Scattering at Sound Waves
403(6)
8.5.2 Acousto-Optic Modulators
409(1)
8.6 Summary
410(1)
8.7 Problems
411(2)
References and Suggested Reading
412(1)
9 Photodetection
413(24)
9.1 Photoelectric Detectors
414(11)
9.1.1 Photoelectron Multiplier Tubes
414(2)
9.1.2 Semiconductor Photodetectors
416(7)
9.1.3 Detector Arrays
423(1)
9.1.4 Photoresistors
424(1)
9.2 Characteristic Parameters of Detectors
425(1)
9.3 Photon Statistics
426(4)
9.4 Photometry and Colorimetry
430(4)
9.4.1 Photometry
430(1)
9.4.2 Colorimetry
431(3)
9.5 Summary
434(1)
9.6 Problems
435(2)
References and Suggested Reading
436(1)
Index 437
Georg A. Reider is head of the Photonics Institute at the TU Vienna. He is giving graduate and post-graduate courses in photonics, nonlinear optics, Fourier optics, optical sensors and other areas. He holds a PhD in physics from the University of Innsbruck and is currently  working at the TU Wien on nonlinear optics and related fields.  He did photonics research at IBM Yorktown Heights,  Columbia University,  MPQ Garching and  MPI Göttingen. He has published on surface second harmonic imaging, surface  molecular dynamics, THz spectroscopy, fiber lasers, magneto-optics, laser micro-machining,  laser plasma interactions, attosecond physics,  and novel nonlinear materials.