Muutke küpsiste eelistusi

Physical Layer of Communications Systems Unabridged edition [Kõva köide]

  • Formaat: Hardback, 888 pages
  • Ilmumisaeg: 28-Feb-2006
  • Kirjastus: Artech House Publishers
  • ISBN-10: 1580536573
  • ISBN-13: 9781580536578
  • Formaat: Hardback, 888 pages
  • Ilmumisaeg: 28-Feb-2006
  • Kirjastus: Artech House Publishers
  • ISBN-10: 1580536573
  • ISBN-13: 9781580536578
Essential reading for telecommunications engineers at all levels, this book is the definitive reference on how networks transmit information. It offers professionals and students a solid understanding of the broad scope of technologies, fundamental concepts, and techniques used in transmitting information over wire-line, optical, and wireless networks. Moreover, the book provides practical solutions that network engineers can use everyday on the job. Practitioners learn how to overcome performance limitations to provide efficient, fast, and reliable transmission. The book discusses all standard networking protocols and the physical characteristics of optical fiber, copper cable, and wireless networks. By emphasizing systems and architectures, the book shows how hardware, circuits, software, and techniques work together to transmit information.
Preface xix
Part I Fundamentals
1(254)
Introduction
3(14)
Background and Definitions
3(6)
Background
3(2)
Definitions
5(3)
Taxonomy of Signals
8(1)
Information Theory Model
9(1)
Protocols and Standards
10(3)
Presentation
13(4)
Theory and Practice
14(1)
Models
15(1)
Outline
15(1)
Conclusion
16(1)
References
16(1)
Electricity
17(76)
Introduction
17(1)
Fundamentals
18(9)
Electric Force
18(2)
Charge and Current
20(2)
Resistance and Ohm's Law
22(4)
Power and Energy
26(1)
DC Circuits
27(15)
Series Circuits
27(4)
Parallel Circuits
31(2)
Loops
33(4)
Thevenin Equivalent Circuit
37(1)
Duality
38(1)
DC Magnetism
39(3)
AC Circuits
42(16)
Sinusoidal Signals
42(1)
Frequency and Phase
43(2)
Calculus of Sinusoids
45(2)
AC Voltage and Current
47(2)
Inductance
49(4)
Capacitance
53(1)
Impedance
54(1)
Series RL Circuit (Extended Example)
55(1)
Series RC Circuit (Extended Example)
56(2)
Bandwidth
58(5)
Series RLC Circuit
58(2)
Resonance
60(1)
Bandwidth
60(1)
Filters
61(2)
Signals and Waveforms
63(10)
Waveforms
63(2)
DC Component
65(2)
AC Coupling
67(1)
Two Ideal Waveforms
68(5)
Transient Behavior
73(20)
Series RC Circuit
74(2)
Extended Example
76(1)
Series RL Circuit
77(1)
A Square-Wave Pulse Train
77(1)
Conclusion
78(1)
Exercises
78(12)
Reference
90(1)
Selected Bibliography
91(2)
Electronics
93(50)
Introduction
93(1)
Semiconductors and Diodes
93(9)
Semiconductor Crystrals
93(2)
PN Junctions
95(2)
Rectifiers
97(2)
Characteristic Curve
99(2)
Optoelectronic Devices
101(1)
Transistors
102(8)
Photolithography
102(1)
Metal-Oxide-Silicon Field-Effect Transistor
103(3)
Bipolar Junction Transistor
106(4)
Amplifiers
110(19)
FET Amplifier
110(2)
BJT Amplifier
112(3)
BJT Circuit Analysis
115(3)
Extended BJTAmplifier Example
118(2)
Amplifier Potpourri
120(9)
Power Supplies
129(4)
Rectifying
129(1)
Smoothing
130(1)
Referencing
131(1)
Regulating
132(1)
OP-AMPs and Analog Computing
133(10)
Differential Input
133(1)
Feedback
134(1)
Analog Computing
135(3)
Conclusion
138(1)
Exercises
138(4)
Reference
142(1)
Selected Bibliography
142(1)
Digital Circuits
143(56)
Introduction
143(1)
Digital Signals
143(5)
Representations
143(2)
Binary Implementations
145(1)
Digital Waveforms
146(1)
Digital Functions
147(1)
Digital Electronics
148(15)
NOT
148(6)
OR and NOR
154(4)
And and Nand
158(5)
Combinational Logic
163(23)
Two-Level Logic
163(5)
Digital Electronics Potpourri
168(7)
Switching Data
175(2)
Gate Minimization
177(9)
Integrated Circuits
186(13)
Small-Scale Integration
186(1)
Fabrication Economics
187(1)
MSI, LSI, and VLSI
188(1)
Application-Specific Integrated Circuits and Programmable Devices
189(3)
Design of ICs
192(1)
Conclusion
193(1)
Exercises
193(4)
Reference
197(1)
Selected Bibliography
197(2)
Digital Systems
199(56)
Introduction
199(1)
Flip-Flops
199(14)
Multivibrators
199(3)
Simple Flip-Flops
202(3)
Shift Register
205(3)
Counters
208(5)
Finite-State Machines
213(9)
JK Flip-Flop
213(2)
Sequential Logic
215(1)
Serial Binary Adder
215(3)
FSM Counters
218(4)
Computer Memories
222(5)
Memory Types
222(1)
Chip Architecture
223(2)
Memory Space Architecture
225(1)
Memory Applications
226(1)
Processors
227(15)
Von Neumann Architecture
227(1)
Processor Architecture
228(3)
Microcode
231(3)
OPcodes
234(2)
Addressing Modes
236(1)
Pipelining
237(2)
Vector Processors
239(1)
Computer System Architecture
239(3)
Programming
242(2)
Assembly Language Programming
242(1)
Using Addressing Modes to Your Advantage
243(1)
Digital Signal Processors
244(11)
Separate Data and Instruction Buses
244(1)
Word Sizes and Real-World Information
245(1)
Specialized Instructions
245(5)
Conclusion
250(1)
Exercises
250(4)
Selected Bibliography
254(1)
Part II Theory
255(154)
Spectral Analysis
257(70)
Introduction
257(1)
Complex Numbers
258(5)
Complex Arithmetic
259(1)
Representing a Phasor
260(1)
Phasor Mathematics
261(1)
Phasors in Electrical Circuits
262(1)
Fourier-Series Analysis of Periodic Signals
263(18)
Decomposition
263(7)
Spectrum
270(1)
Superposition Revisited
271(5)
Envelopes
276(5)
Philosophical Generalization
281(5)
Concepts Related to Vector Spaces
282(2)
The Gram-Schmidt Orthonormalization Procedure
284(1)
Generalization to Functions and Periodic Signals
285(1)
Fourier-Transform Analysis of Aperiodic Signals
286(15)
The Fourier Transform Pair
286(6)
Fourier Transform and Series
292(2)
Miscellaneous Properties
294(5)
Table of Fourier Series and Transforms
299(2)
Convolution and Filters
301(5)
Transfer Function
301(1)
Impulse Response
302(1)
Convolution Integral
303(1)
Filters
304(2)
Sampling
306(4)
Discrete Fourier Transforms
310(17)
Discrete-Time Signals and Systems
310(7)
The DFT and the FFT
317(2)
Conclusion
319(1)
Exercises
319(6)
References
325(1)
Selected Bibliography
326(1)
Random Signals
327(50)
Introduction
327(1)
Random Voltages
328(18)
Digital Random Voltages
329(5)
Analog Random Voltages
334(8)
Statistics
342(4)
Combining Random Voltages
346(13)
Multiple Random Voltages
346(7)
Functions of Random Voltages
353(6)
Time-Varying Random Voltages
359(18)
Types of Random Signals
359(2)
Stationary and Ergodic
361(2)
Statistics
363(2)
Autocorrelation Function
365(6)
Spectrum of a Random Signal
371(1)
Conclusion
372(1)
Exercises
372(4)
Selected Bibliography
376(1)
Information Theory
377(32)
Introduction
377(1)
Shannon's Model
377(2)
Source Coding
379(6)
Entropy
379(2)
Noiseless Coding Limits
381(1)
Huffman Code
381(1)
Higher-Order Processes
382(2)
Data Compression
384(1)
Rate and Capacity
385(8)
Rate
385(2)
Channel Capacity
387(2)
Three Examples of Channels
389(3)
How Close?
392(1)
Error Control Codes
393(16)
Linear Block Codes
393(2)
Hamming Distance and Error Detection
395(2)
Hamming Code
397(5)
Performance of Block Codes
402(2)
Other Types of Codes
404(1)
Conclusion
405(1)
Exercises
405(3)
References
408(1)
Selected Bibliography
408(1)
Part III Transmitting Signals
409(122)
Transmitting Analog Signals
411(54)
Introduction
411(1)
Analog Signals and Systems
412(4)
Continuity
412(1)
Transduction
413(1)
Superposition
414(1)
Spectrum
414(2)
Loss
416(6)
Loss Models
417(1)
Dissipation
418(1)
Attenuation
418(1)
Decibels
419(3)
Noise
422(13)
Noise Sources
423(2)
Noise Characteristics
425(3)
Uniformly Noisy Channel
428(2)
Noise Metrics
430(3)
Link Power Budget
433(2)
Other Impairments
435(2)
Delay
435(1)
Reflection
436(1)
Distortion
436(1)
Dispersion
437(1)
Compensation
437(4)
Amplifiers
437(1)
Noise Filters
437(1)
Load Coils
438(1)
Equalizers
438(1)
Echo Compensators
439(1)
Summary
439(2)
Waves
441(8)
Propagation
441(6)
Polarization
447(2)
Analog-to-Digital Conversion
449(16)
Why A/D Conversion?
449(1)
Signals and Filters in A/D Conversion
450(2)
Quantization
452(3)
Pulse Code Modulation
455(3)
Conclusion
458(1)
Exercises
459(4)
References
463(1)
Selected Bibliography
463(2)
Transmitting Digital Signals
465(66)
Introduction
465(1)
Digital Signals and Systems
466(3)
Digital and Analog Natures of Digital Signals
466(1)
Digital's Bright Side
467(2)
Digital's Dark Side
469(1)
Impairments and Compensations
469(9)
Impairments to Digital Signals
470(1)
Frequency Distortion
470(2)
Eye Diagram
472(2)
Frequency Dispersion
474(3)
Compensations
477(1)
Synchronization
478(6)
Signal Synchronization
478(2)
Universal Asynchronous Receiver/Transmitter
480(2)
Channel Synchronization
482(1)
Synchronization Schemes
483(1)
Jitter
484(17)
Statistical Analysis of Jitter
485(1)
Jitter in Line Codes
486(3)
System Level Causes of Jitter
489(5)
Jitter Removal
494(7)
Line Codes
501(15)
Digital Receiver
501(2)
Strobe Synchronization
503(2)
Basic Line Codes
505(3)
Manchester Code
508(1)
BAMI
509(2)
4B5B
511(1)
Multilevel Codes
512(1)
Pulse Modulation
513(3)
Bit Error Rate and Link Budget
516(15)
The Detection Process
517(1)
Optimum Receiver
518(2)
Computation of BER for Simple Line Codes
520(4)
Detection Algorithms
524(1)
Link Budget
525(1)
Conclusion
526(1)
Exercises
527(3)
Reference
530(1)
Selected Bibliography
530(1)
Part IV Transmission Media
531(140)
Guided Transmission
533(38)
Introduction
533(1)
Physical Structures
533(21)
Types of Physical Structures
533(4)
Twisted Pair
537(4)
Coaxial Lines
541(5)
Connectors
546(4)
Printed Circuit Boards
550(1)
Integrated Circuits
551(3)
Telephone Wires
554(5)
POTS Wires and Signals
554(2)
Telephone Wiring Topology
556(2)
Measurements
558(1)
Transmission Lines
559(12)
Distributed Impedance Model
560(1)
Line Impedance and Reflections
561(4)
Smith Chart
565(2)
Conclusion
567(1)
Exercises
567(3)
References
570(1)
Selected Bibliography
570(1)
Photonics
571(70)
Introduction
571(1)
Optics
572(12)
The Wave Model
572(2)
The Particle/Ray Model
574(1)
Index of Refraction
575(5)
Potpourri
580(4)
Optical Fiber
584(7)
Structure
584(2)
Manufacture
586(1)
Attenuation
587(1)
Capacity
588(2)
Architectural Impact
590(1)
Dispersion
591(9)
Fiber's Modes
591(2)
Modal Distortion
593(3)
Chromatic Dispersion
596(1)
Waveguide Dispersion
597(1)
Combining Multiple Dispersive Effects
598(2)
Architectural Impact
600(1)
Optical-to-Electronic Conversion
600(7)
Optical Modulation and Detection
601(1)
Review of Semiconductor Diodes
601(1)
Photodiodes
602(2)
Receiver Circuits
604(3)
Electronic-to-Optical Conversion
607(12)
Light-Emitting Diodes
607(3)
Fabry-Perot Resonator
610(1)
Semiconductor Diode Lasers
610(5)
Longitudinal Modes
615(2)
Optical Amplifiers
617(1)
Architectural Impact
618(1)
Passive Optics
619(7)
Coupling Losses
619(2)
Compensation Techniques
621(2)
Connectors
623(1)
Splices
624(1)
Splitters
625(1)
Architectural Impact
626(1)
Fiber's Nonlinearities
626(6)
Five Phenomena
627(4)
Nonlinearity's Benefits
631(1)
Digital Optical Link
632(9)
Digital Optical Signals
633(1)
Noise in Optical Transmission
633(1)
Link Power Budget
634(1)
Technology Families
635(1)
Conclusion
636(1)
Exercises
636(4)
Selected Bibliography
640(1)
Wireless Transmission
641(30)
Introduction
641(1)
Electromagnetic Spectrum
642(1)
Antennas
643(5)
Radio Propagation
648(16)
Mechanisms
649(2)
Large-Scale Fading and Path Loss Models
651(6)
Small-Scale Fading
657(7)
Infrared Transmission
664(1)
Link Power Budget
665(6)
Conclusion
666(1)
Exercises
667(3)
References
670(1)
Part V Techniques
671(144)
Modulation
673(54)
Introduction
673(1)
Why Modulation?
674(1)
Analog Modulation
674(12)
Amplitude Modulation
675(6)
Frequency Modulation
681(5)
Digital Modulation
686(29)
Binary Modulation Schemes
688(4)
M-ary Modulation Schemes
692(2)
Demodulation
694(4)
Signal and Noise Representation
698(6)
Signal Constellations and Performance Analysis
704(9)
Spectra and Bandwidth of Digitally Modulated Signals
713(2)
Miscellaneous Topics
715(12)
Orthogonal Frequency Division Multiplexing
715(2)
Spread Spectrum
717(2)
Conclusion
719(1)
Exercises
719(7)
References
726(1)
Selected Bibliography
726(1)
Multiplexing
727(28)
Introduction
727(1)
Channels
727(2)
Multiplexing
728(1)
Time Multiplexing
729(3)
DSI Format
730(1)
Ethernet
731(1)
GSM
731(1)
Frequency Division Multiplexing
732(2)
Optical Wavelength Multiplexing
734(6)
General Concept
734(1)
WDM's Simple Constraint
734(2)
More Wavelengths by Managing Dispersion
736(3)
Replace Time Multiplexing?
739(1)
Code Division Multiplexing
740(6)
Orthogonality and Multiplexing
740(2)
CDM Using Orthogonal Spreading Codes
742(3)
CDM Using Pseudonoise Spreading Codes
745(1)
CDM Systems
745(1)
Space Division Multiplexing
746(2)
Frequency Reuse in Cellular Systems
746(2)
Casting and Directionality
748(7)
Casting
748(1)
Directionality
749(2)
Conclusion
751(1)
Exercises
751(3)
Reference
754(1)
Selected Bibliography
754(1)
Systems
755(60)
Introduction
755(1)
The Public Switched Telephone Network (Voice)
755(6)
Borscht
756(1)
Local Access
757(1)
Central Office
758(1)
CO Serving Areas
759(1)
Signaling
760(1)
Asynchronous Digital Hierarchy
761(13)
History and Taxonomy
761(2)
ADH Hierarchy
763(1)
T1
764(2)
Supervision Signaling
766(2)
DS2
768(4)
DS3
772(2)
Synchronous Digital Hierarchy
774(10)
Naming and Components
774(2)
Overhead Processing
776(1)
Frequency Justification
777(2)
Frame Format
779(1)
Virtual Tributaries
780(4)
Data over Telephone Lines
784(5)
Integrated Services Digital Network (ISDN)
784(1)
Digital Subscriber Line (DSL)
785(4)
Other Wired Data Systems
789(8)
Ethernet
789(4)
CATV
793(4)
Wireless Systems
797(18)
Commercial Radio and Television Transmissions
797(2)
Cellular Phone Systems
799(2)
Wireless Data Networks
801(1)
WiFi
802(2)
Communications Satellites
804(3)
Conclusion
807(1)
Exercises
808(5)
Reference
813(1)
Selected Bibliography
813(2)
Part VI Appendices
815(34)
Appendix A Modeling and Simulation
817(18)
Introduction
817(1)
General Overview
817(1)
Aspects of Modeling
818(1)
Why Modeling?
818(1)
Causal and Acausal Modeling Concepts
819(1)
Types of Analysis
820(1)
Modeling Development Approaches
820(3)
IC Design Flow
823(1)
Hardware Description Languages
824(3)
Tools
827(1)
Examples
828(5)
References
833(2)
Appendix B Electromagnetic Waves
835(14)
Introduction
835(1)
The Physics of Electricity
835(5)
Magnetism and Its Relation to Electricity
840(4)
Guided EM Waves
844(4)
Selected Bibliography
848(1)
About the Authors 849(2)
Index 851


Richard A. Thompson is a professor at the University of Pittsburgh, where he serves as director of the telecommunications program. He holds an M.S. degree in electrical engineering from Columbia University and a Ph.D. in computer science from the University of Connecticut.