Muutke küpsiste eelistusi

Physics and Evolution of Supernova Remnants 1st ed. 2020 [Kõva köide]

  • Formaat: Hardback, 521 pages, kõrgus x laius: 235x155 mm, kaal: 980 g, 137 Illustrations, color; 33 Illustrations, black and white; XXIII, 521 p. 170 illus., 137 illus. in color., 1 Hardback
  • Sari: Astronomy and Astrophysics Library
  • Ilmumisaeg: 11-Nov-2020
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030552292
  • ISBN-13: 9783030552299
Teised raamatud teemal:
  • Kõva köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 521 pages, kõrgus x laius: 235x155 mm, kaal: 980 g, 137 Illustrations, color; 33 Illustrations, black and white; XXIII, 521 p. 170 illus., 137 illus. in color., 1 Hardback
  • Sari: Astronomy and Astrophysics Library
  • Ilmumisaeg: 11-Nov-2020
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030552292
  • ISBN-13: 9783030552299
Teised raamatud teemal:

Written by a leading expert, this monograph presents recent developments on supernova remnants, with the inclusion of results from various satellites and ground-based instruments. The book details the physics and evolution of supernova remnants, as well as provides an up-to-date account of recent multiwavelength results. Supernova remnants provide vital clues about the actual supernova explosions from X-ray spectroscopy of the supernova material, or from the imprints the progenitors had on the ambient medium supernova remnants are interacting with - all of which the author discusses in great detail. The way in which supernova remnants are classified, is reviewed and explained early on. A chapter is devoted to the related topic of pulsar wind nebulae, and neutron stars associated with supernova remnants. 

The book also includes an extended part on radiative processes, collisionless shock physics and cosmic-ray acceleration, making this book applicable to a wide variety of astronomical sub-disciplines. With its coverage of fundamental physics and careful review of the state of the field, the book serves as both textbook for advanced students and as reference for researchers in the field.


1 Introduction
1(4)
2 Supernovae
5(28)
2.1 The Optical Classification of Supernovae
8(5)
2.1.1 Spectroscopic Classification
8(2)
2.1.2 Supernova Light Curve Classification
10(2)
2.1.3 The Supernova Rates Per Type
12(1)
2.2 Core-Collapse Supernovae
13(5)
2.2.1 Pre-explosion Composition
13(1)
2.2.2 Neutron Star and Black Hole Formation
14(1)
2.2.3 The Explosion Mechanism
15(1)
2.2.4 Electron-Capture Supernovae of 8--10 M Stars
16(1)
2.2.5 Core-Collapse Supernova Ejecta Composition
17(1)
2.3 Thermonuclear (Type la) Supernovae
18(8)
2.3.1 The Single Degenerate Versus Double Generate Channel
19(2)
2.3.2 Thermonuclear Explosions: Deflagration Versus Detonation
21(2)
2.3.3 The Diversity Among Type la Supernova
23(3)
2.4 Detection of Radio-Active Elements from Supernovae
26(1)
2.5 Light Echoes
27(6)
3 Classification and Population
33(22)
3.1 Morphological Classification of Supernova Remnants
33(3)
3.2 The Galactic Supernova Remnant Population
36(7)
3.2.1 Finding and Naming Supernova Remnants
37(1)
3.2.2 Measuring Distances to Supernova Remnants
38(2)
3.2.3 The E-D Relation
40(3)
3.3 The Spatial Distribution of Known Galactic Supernova Remnants
43(3)
3.4 The Supernova-Remnant Population in the Magellanic Clouds
46(4)
3.5 Supernova Remnant Populations in Other Galaxies
50(5)
4 Shocks and Post-shock Plasma Processes
55(32)
4.1 The Rankine-Hugoniot Jump Conditions
56(2)
4.2 Magnetohydrodynamical Shocks
58(4)
4.3 Collisionless Shocks
62(13)
4.3.1 Visocity and the Shock Transition Layer Thickness
62(2)
4.3.2 The Collisional Mean Free Path
64(1)
4.3.3 The Thermalisation Processes
65(2)
4.3.4 The Expected Post-shock Electron-Ion Temperature Ratio
67(2)
4.3.5 Post-shock Electron-Ion Temperature Equilibration
69(4)
4.3.6 Heat Conduction
73(2)
4.4 Radiative Shocks
75(5)
4.4.1 Isothermal Shocks
78(1)
4.4.2 Magnetically Supported, Radiative Shocks
79(1)
4.5 Shock Waves Mediated by Magnetic Precursors
80(7)
5 Supernova Remnant Evolution
87(30)
5.1 Supernova Remnant Evolution: Four Phases
87(1)
5.2 The Expansion Parameter
88(1)
5.3 The Reverse Shock
89(3)
5.3.1 The Reverse Shock Velocity in the Shock- and Observer-Frame
90(1)
5.3.2 The Condition for Forming a Reverse Shock
91(1)
5.3.3 The Turning Around of the Reverse Shock
92(1)
5.4 Self-similar Solutions
92(4)
5.4.1 The Self-similar Sedov-Taylor Solution
93(1)
5.4.2 An Alternative Derivation of the Sedov-Taylor Solution
94(1)
5.4.3 The Sedov-Taylor solution for a stellar-wind profile
95(1)
5.4.4 The Expected Size Distribution of Supernova Remnants
95(1)
5.5 The Internal Structure of Self-similar Explosions
96(1)
5.6 Self-similar Models for the Ejecta-Dominated Phase
97(6)
5.6.1 The Chevalier Self-similar Model for Young Remnants
99(2)
5.6.2 The Transition from Ejecta-Dominated to Adiabatic Phase
101(2)
5.7 The Late Time Evolution of Supernova Remnants
103(1)
5.8 Supernova Remnant Evolution Inside Wind Bubbles
104(8)
5.8.1 The Evolution of Main Sequence Wind Bubbles
108(2)
5.8.2 Supernova Remnant Evolution of Inside Wind Bubbles
110(2)
5.9 Rayleigh-Taylor Instabilities
112(5)
6 Neutron Stars, Pulsars, and Pulsar Wind Nebulae
117(54)
6.1 The Internal Constitution of Neutron Stars
118(1)
6.2 Pulsars
119(9)
6.2.1 The Magnetic Dipole Model for Neutron Stars
119(4)
6.2.2 The Pulsar Braking Index
123(2)
6.2.3 The Magnetosphere
125(3)
6.3 The Inner Regions of Pulsar Wind Nebulae
128(11)
6.3.1 The Pulsar Wind
129(2)
6.3.2 The Kennel and Coroniti Model
131(3)
6.3.3 Wisps, Jets, and Tori
134(1)
6.3.4 The CT-Problem
135(4)
6.4 The Evolution and Radiation of Pulsar Wind Nebulae
139(17)
6.4.1 A Self-similar Solution for the Expansion into the Ejecta
140(2)
6.4.2 The Appearance and Dynamics of the Crab Nebula
142(1)
6.4.3 Pulsar Wind Nebulae Interacting with the Reverse Shock
143(2)
6.4.4 The Radiation from Pulsar Wind Nebulae
145(3)
6.4.5 The Electron/Positron Populations in Pulsar Wind Nebulae
148(2)
6.4.6 The Frequency Dependent Sizes of Pulsar Wind Nebulae
150(1)
6.4.7 The Large Extent of Some Pulsar Wind Nebulae in γ-Rays
151(3)
6.4.8 Pulsars Moving Through Hot Supernova Remnant Shells
154(2)
6.5 Magnetars and Central Compact Objects
156(13)
6.5.1 Magnetars
158(8)
6.5.2 Compact Central Objects (CCOs)
166(3)
6.6 Concluding Remarks
169(2)
7 Dust Grains and Infrared Emission
171(28)
7.1 Introduction: Interstellar Dust
171(2)
7.2 The Supernova Connection
173(1)
7.3 Dust Heating and Radiation
174(9)
7.3.1 Dust Emission
174(2)
7.3.2 Collisional Dust Heating
176(4)
7.3.3 Stochastic Dust Heating
180(2)
7.3.4 Determining Dust Masses
182(1)
7.4 Dust Formation in Supernova Ejecta
183(4)
7.5 Dust Destruction in Supernova Remnants
187(3)
7.6 Infrared Observations of Supernova Remnants
190(9)
7.6.1 Infrared Emission from Young Supernova Remnants
191(5)
7.6.2 Observational Evidence for Dust Destruction
196(3)
8 Optical Emission from Supernova Remnants
199(22)
8.1 Line Emission from Radiative Shocks Regions
200(7)
8.1.1 On the Prominence of Forbidden Line Emission
201(5)
8.1.2 Optical Emission from Young Supernova Remnants: Optical Emission from High-Density Clumps
206(1)
8.2 Balmer-Dominated Shocks
207(14)
8.2.1 The Formation of the Narrow- and Broad-Line Components
209(3)
8.2.2 The Broad- to Narrow-Line Ratio as a Diagnostic Tool
212(3)
8.2.3 Measuring Distances to Balmer-Dominated Shocks
215(1)
8.2.4 The Shock Structure in the Presence of Neutrals
215(1)
8.2.5 Complications: Pickup Ions and Non-thermal Distributions
215(2)
8.2.6 The Effects of Cosmic-Ray Acceleration
217(4)
9 Young Supernova Remnants: Probing the Ejecta and the Circumstellar Medium
221(36)
9.1 Core-Collapse Versus Type Ia Supernova Remnants
221(3)
9.2 Type la Supernova Remnants
224(14)
9.2.1 Hydrodynamical Plus Radiation Modelling
227(1)
9.2.2 X-ray Cr and Mn Line Diagnostics
228(2)
9.2.3 The Ambient Medium of Type Ia Supernova Remnants
230(6)
9.2.4 The Case of the Missing Donor Stars
236(1)
9.2.5 The Confusing Evidence Concerning Type Ia Progenitors
237(1)
9.3 Core-Collapse Supernova Remnants
238(19)
9.3.1 Cas A and Other Oxygen-Rich Supernova Remnants
239(4)
9.3.2 Asymmetric Ejecta: Donuts, Jets, Rings and Bubbles
243(6)
9.3.3 SN 1987A: the making of a supernova remnant
249(8)
10 Middle-Aged and Old Supernova Remnants
257(20)
10.1 The Presence of Metal-Rich Ejecta in Middle-Aged Supernova Remnants
260(2)
10.2 Interaction with Molecular Clouds
262(6)
10.2.1 Radiation from Molecules
263(1)
10.2.2 The Interaction of Shocks with Molecular Clouds
264(3)
10.2.3 Maser Emission from Supernova Remnants
267(1)
10.3 Mixed-Morphology Supernova Remnants
268(9)
11 Cosmic-Ray Acceleration by Supernova Remnants: Introduction and Theory
277(46)
11.1 Introduction: Galactic Cosmic Rays
277(17)
11.1.1 The Cosmic-Ray Spectrum
278(2)
11.1.2 Cosmic-Ray Composition
280(4)
11.1.3 Cosmic-Ray Transport in the Galaxy
284(5)
11.1.4 SNRs as the dominant sources for Galactic cosmic rays
289(1)
11.1.5 Other Potential Sources of Galactic Cosmic Rays
290(4)
11.2 The Theory of Diffusive Shock Acceleration
294(14)
11.2.1 Diffusive-Shock Acceleration
294(3)
11.2.2 The Convection-Diffusion Equation
297(3)
11.2.3 The Acceleration Time Scale
300(2)
11.2.4 The Maximum Size of the Cosmic-Ray Shock Precursor
302(1)
11.2.5 The Effect of Adiabatic Losses on the Maximum Energy
303(1)
11.2.6 Particle Acceleration by Evolving Shocks
303(2)
11.2.7 The Escape of Cosmic Rays
305(1)
11.2.8 Radiative Losses: The Maximum Electron Energy
305(3)
11.3 Non-linear Shock Acceleration
308(5)
11.4 Particle Acceleration and Magnetic Fields
313(10)
11.4.1 Resonant Particle-Wave Interaction
314(3)
11.4.2 Streaming Instabilities and Non-resonant Processes
317(1)
11.4.3 The non-resonant Bell instability
318(5)
12 Supernova Remnants and Cosmic Rays: Non-thermal Radiation
323(56)
12.1 Radio Observations
323(15)
12.1.1 The Radio Spectral Index Distribution
324(3)
12.1.2 The Minimum Energy Requirement and the Van der Laan Mechanism
327(3)
12.1.3 The Radio Evolution of Supernova Remnants
330(5)
12.1.4 Radio Polarisation Measurements
335(3)
12.2 X-ray Synchrotron Radiation
338(18)
12.2.1 The Implication of X-ray Synchrotron Radiation
340(1)
12.2.2 The Narrow Widths of the X-ray Synchrotron Regions
341(4)
12.2.3 The Case for Magnetic-Field Amplification
345(4)
12.2.4 Magnetic-Field Amplification Near the Reverse Shock
349(1)
12.2.5 X-ray Synchrotron Flickering and Flux Decline
350(3)
12.2.6 X-ray Synchrotron Peculiarities and (Possible) Consequences
353(3)
12.3 Gamma-Rays Observations: A Window on the Hadronic Cosmic-Ray Content of Supernova Remnants
356(23)
12.3.1 A Brief Historical Overview of γ-Ray Astronomy
357(2)
12.3.2 Hadronic Versus Leptonic Emission
359(5)
12.3.3 A Few Words on Modelling Inverse Compton Scattering
364(3)
12.3.4 Gamma-Ray Evidence for Escaping Cosmic Rays
367(3)
12.3.5 The Population of γ-Ray Emitting Supernova Remnants
370(4)
12.3.6 Where Are the PeVatrons?
374(5)
13 Radiation Processes
379(80)
13.1 Introduction
379(1)
13.2 Radiation from Moving Charged Particles
380(9)
13.2.1 Thomson Scattering
380(3)
13.2.2 Inverse Compton Scattering
383(6)
13.3 Synchrotron Radiation
389(10)
13.3.1 The Synchrotron Power and Spectrum
390(4)
13.3.2 Radiation from a Power-Law Electron Distribution
394(1)
13.3.3 The Effects of Synchrotron Radiation Energy Losses
395(2)
13.3.4 Cooling Breaks
397(2)
13.4 Bremsstrahlung (Free-Free Emission)
399(12)
13.4.1 Bremsstrahlung from a Single Electron-Ion Encounter
401(2)
13.4.2 The Collisional Cross-Section and Total Radiation Spectrum
403(2)
13.4.3 Relativistic Bremsstrahlung
405(1)
13.4.4 Thermal Bremsstrahlung
406(2)
13.4.5 Non-thermal Bremsstrahlung
408(2)
13.4.6 Free-Free Absorption
410(1)
13.5 Line Emission, Ionisation and Recombination Processes
411(38)
13.5.1 The Einstein Coefficients and Oscillator Strength
413(2)
13.5.2 Some Basic Atomic Physics
415(6)
13.5.3 The Atomic Shell Model and Electron Configurations
421(5)
13.5.4 Electron Transition Probabilities and the Einstein Coefficients
426(4)
13.5.5 Collisional Processes that Shape Emission Line Spectra
430(7)
13.5.6 Radiative Recombination Continuum (Free-Bound Emission)
437(2)
13.5.7 Non-equilibrium Ionisation
439(3)
13.5.8 X-ray Line Emission Diagnostics
442(5)
13.5.9 Resonant Absorption and Line Scattering
447(2)
13.6 Pion Production and Decay
449(10)
13.6.1 Meson Production in Supernova Remnants
451(1)
13.6.2 The Energy Threshold for Pion Production
452(1)
13.6.3 The Formation of the γ-Ray Spectrum
453(6)
14 Summary and Prospects
459(16)
14.1 Knowledge Gained and Outstanding Questions
459(3)
14.2 Future Observing Facilities
462(8)
14.3 The Emergence of Multimessenger Astronomy
470(1)
14.4 The Extragalactic Transients Connection
471(4)
Bibliography 475(38)
Index 513(6)
Astrophysical objects 519
Dr. Jacco Vink obtained his PhD in Astronomy from Utrecht University in 1999, based on research carried out at SRON The Netherlands Institute for Space Research after several postdoctoral research positions, among others as a NASA Chandra fellow at Columbia University in New York. He became an assistant professor at Utrecht University in 2005, and an associate professor at Amsterdam University as part of the center of excellence for Gravitation and Astroparticle Physics Amsterdam (GRAPPA).  He is working in the field of high energy astrophysics -- specifically, cosmic ray acceleration by supernova remnants. He is a member of the H.E.S.S. collaboration (gamma- rays), for which he leads the pulsar wind nebula/supernova remnant working group, and he is among others a science team member for two upcoming X-ray satellites: XRISM and IXPE.