Muutke küpsiste eelistusi

PLANT BREEDING: Classical to Modern 2019 ed. [Kõva köide]

  • Formaat: Hardback, 570 pages, kõrgus x laius: 235x155 mm, kaal: 1323 g, 124 Illustrations, color; 84 Illustrations, black and white; XXIII, 570 p. 208 illus., 124 illus. in color., 1 Hardback
  • Ilmumisaeg: 20-Nov-2019
  • Kirjastus: Springer Verlag, Singapore
  • ISBN-10: 981137094X
  • ISBN-13: 9789811370946
Teised raamatud teemal:
  • Kõva köide
  • Hind: 113,55 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 133,59 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 570 pages, kõrgus x laius: 235x155 mm, kaal: 1323 g, 124 Illustrations, color; 84 Illustrations, black and white; XXIII, 570 p. 208 illus., 124 illus. in color., 1 Hardback
  • Ilmumisaeg: 20-Nov-2019
  • Kirjastus: Springer Verlag, Singapore
  • ISBN-10: 981137094X
  • ISBN-13: 9789811370946
Teised raamatud teemal:

This book offers a detailed overview of both conventional and modern approaches to plant breeding. In 25 chapters, it explores various aspects of conventional and modern means of plant breeding, including: history, objective, activities, centres of origin, plant introduction, reproduction, incompatibility, sterility, biometrics, selection, hybridization, methods of breeding both self- and cross- pollinated crops, heterosis, synthetic varieties, induced mutations and polyploidy, distant hybridization, quality breeding, ideotype breeding, resistance breeding, breeding for stress resistance, G x E interactions, tissue culture, genetic engineering, molecular breeding, genomics, gene action and varietal release.

The book’s content addresses the needs of students worldwide.  Modern methods like molecular breeding and genomics are dealt with extensively so as to provide a firm foundation and equip readers to read further advanced books.

Each chapter discusses the respective subject as comprehensively as possible, and includes a section on further reading at the end. Info-boxes highlight the latest advances, and care has been taken to include nearly all topics required under the curricula of MS programs. As such, the book provides a much-needed reference guide for MS students around the globe.

Part I Generalia
1 Introduction to Plant Breeding
3(32)
1.1 Plant Domestication
14(2)
1.2 Plant Breeding: Pre-Mendelian
16(1)
1.3 Plant Breeding: Post-Mendelian
17(3)
1.4 Food Scarcity, Norman Borlaug and Green Revolution
20(2)
1.4.1 Semi-dwarf Varieties of Wheat and Rice
20(2)
1.5 Facets of Plant Breeding
22(6)
1.6 Future Challenges
28(4)
Further Reading
32(3)
2 Objectives, Activities and Centres of Origin
35(14)
2.1 Centres of Origin
38(9)
2.1.1 Vavilov's Original Concepts
39(8)
Further Reading
47(2)
3 Germplasm Conservation
49(28)
3.1 In Vitro Germplasm Preservation
50(2)
3.2 Germplasm Regeneration
52(1)
3.3 Characterization, Evaluation, Documentation and Distribution
53(7)
3.3.1 Characterization
53(2)
3.3.2 Evaluation
55(2)
3.3.3 Documentation
57(3)
3.3.4 Distribution of Germplasm
60(1)
3.4 FAO and Plant Genetic Resources
60(2)
3.4.1 FAO Commission on Plant Genetic Resources
61(1)
3.5 Germplasm: International vs. Indian Scenario
62(2)
3.6 Plant Introduction
64(1)
3.6.1 Historical Perspective
64(1)
3.7 Plant Introduction: The International Scenario
65(3)
3.7.1 Import Regulations
65(1)
3.7.2 Plant Germplasm Import and Export
66(2)
3.8 Plant Introduction in India
68(4)
3.9 Conservation of Endangered Species/Crop Varieties
72(1)
Further Reading
73(4)
Part II Developmental Aspects
4 Modes of Reproduction and Apomixis
77(14)
4.1 Sexual Reproduction
77(4)
4.2 Vegetative (Asexual) Reproduction
81(2)
4.3 Apomixis
83(5)
4.3.1 Gametophytic Apomixis
85(1)
4.3.2 Sporophytic Apomixis
85(1)
4.3.3 Genetics of Apomixis
85(2)
4.3.4 Apomixis in Agriculture
87(1)
Further Reading
88(3)
5 Self-Incompatibility
91(14)
5.1 Mechanism of Self-Incompatibility
93(11)
5.1.1 The Pollen-Stigma-Style-Ovule Interactions
98(2)
5.1.2 Significance of Self-Incompatibility
100(1)
5.1.3 Methods to Overcome Self-Incompatibility
101(3)
Further Reading
104(1)
6 Male Sterility
105(26)
6.1 Male Sterility
109(8)
6.1.1 Genetic Male Sterility Ill
6.1.2 Cytoplasmic Male Sterility
111(3)
6.1.3 Genes for CMS and Restoration of Fertility (Cytoplasmic-Genetic Male Sterility)
114(3)
6.1.4 Mechanisms of Restoration
117(1)
6.2 Engineering Male Sterility
117(8)
6.2.1 Dominant Nuclear Male Sterility (Pollen Abortion or Barnase/Barstar System)
118(1)
6.2.2 Male Sterility Through Hormonal Engineering
119(1)
6.2.3 Pollen Self-Destructive Engineered Male Sterility
120(1)
6.2.4 Male Sterility Using Pathogenesis-Related Protein Genes
120(1)
6.2.5 RNAi and Male Sterility
121(1)
6.2.6 Mitochondrial Rearrangements for CMS
122(2)
6.2.7 Chloroplast Genome Engineering for CMS
124(1)
6.3 Male Sterility in Plant Breeding
125(4)
Further Reading
129(2)
7 Basic Statistics
131(42)
7.1 Common Biometrical Terms
132(7)
7.1.1 Genetic Variation
132(1)
7.1.2 Measures of Variation
133(1)
7.1.3 Coefficient of Variation
134(1)
7.1.4 Probability
134(1)
7.1.5 Normal Distribution
134(2)
7.1.6 Statistical Hypothesis
136(2)
7.1.7 Standard Error of the Mean
138(1)
7.2 Correlation Coefficient (r)
139(3)
7.2.1 Regression Analysis
140(2)
7.3 Heritability
142(2)
7.3.1 Heritability and the Partitioning of Total Variance
143(1)
7.4 Principles of Experimental Design
144(12)
7.4.1 Randomization
144(1)
7.4.2 Replication
145(1)
7.4.3 Local Control
145(1)
7.4.4 Completely Randomized Design (CRD)
146(3)
7.4.5 Randomized Complete Block Design (RCBD)
149(4)
7.4.6 Latin Square Design
153(3)
7.5 Tests of Significance
156(2)
7.5.1 Chi-Square Test (for Goodness of Fit)
156(1)
7.5.2 f-Test
157(1)
7.6 Analysis of Variance
158(2)
7.7 Multivariate Statistics
160(7)
7.7.1 Cluster Analysis
161(1)
7.7.2 Principal Component Analysis (PCA) and Principal Coordinate Analysis (PCoA)
162(2)
7.7.3 Multidimensional Scaling
164(1)
7.7.4 Path Analysis
164(3)
7.8 Hardy-Weinberg Equilibrium
167(2)
Further Reading
169(4)
Part III Methods of Breeding
8 Selection
173(12)
8.1 History of Selection
173(1)
8.2 Genetic Effects of Selection
174(1)
8.3 Systems of Selection and Gene Action
174(5)
8.3.1 Selection in Favour of and Against Allele
175(1)
8.3.2 Selection for Genes with Epistatic Effects
175(1)
8.3.3 Selection for a Single Quantitative Trait
175(1)
8.3.4 Selection on the Basis of Individuality
176(1)
8.3.5 Selection on the Basis of Pedigrees
177(1)
8.3.6 Selection on the Basis of Progeny Tests
178(1)
8.3.7 Selection for Specific Combining Ability
178(1)
8.4 Selection of Superior Strains
179(4)
Further Reading
183(2)
9 Hybridization
185(18)
9.1 History
185(3)
9.2 Procedure of Hybridization
188(12)
9.2.1 Techniques
189(4)
9.2.2 Distant Hybridization
193(1)
9.2.3 Choice and Evaluation of Parents
194(6)
9.3 Consequences of Hybridization
200(2)
Further Reading
202(1)
10 Backcross Breeding
203(20)
10.1 Procedure of Backcross
204(4)
10.2 Recovery Rate of RP Genes
208(2)
10.3 Molecular Marker-Assisted Backcrossing
210(4)
10.3.1 Recurrent Selection in B ackcross
214(1)
10.4 Transfer of Quantitative Characters
214(6)
10.4.1 AB-QTL in Self-Pollinated Crops
215(1)
10.4.2 AB-QTL in Cross-Pollinated Crops
215(1)
10.4.3 Merits and Demerits of AB-QTL Method
216(1)
10.4.4 Marker-Assisted Gene Pyramiding
217(1)
10.4.5 Modifications of Backcross Method
217(1)
10.4.6 Merits and Demerits of Backcross Breeding
218(2)
Further Reading
220(3)
11 Breeding Self-Pollinated Crops
223(20)
11.1 Self-Pollinated Crops: Methods
225(13)
11.1.1 Mass Selection
226(1)
11.1.2 Pure-Line Selection
227(3)
11.1.3 Hybridization and Pedigree Selection
230(8)
11.2 Special Backcross Procedures
238(1)
11.3 Multiline Breeding and Cultivar Blends
238(1)
11.4 Breeding Composites and Recurrent Selection
238(3)
11.4.1 Hybrid Varieties
239(2)
Further Reading
241(2)
12 Breeding Cross-Pollinated Crops
243(14)
12.1 Selection in Cross-Pollinated Crops
244(4)
12.1.1 Mass Selection
245(1)
12.1.2 Recurrent Selection
245(3)
12.2 Intra-population Improvement Methods
248(7)
12.2.1 Individual Plant Selection Methods
248(1)
12.2.2 Family Selection Methods
249(6)
Further Reading
255(2)
13 Recombinant Inbred Lines
257(12)
13.1 Inbred Line Development in Cross-Pollinated Crops
257(2)
13.2 Methods Adopted for RJLs
259(2)
13.2.1 Selection of Parent Strains
259(1)
13.2.2 Selection of Construction Design
259(1)
13.2.3 Parent Cross and F, Cross
260(1)
13.2.4 Advanced Intercross
260(1)
13.2.5 Inbreeding
260(1)
13.3 Doubled Haploid Breeding
261(2)
13.4 Reverse Breeding
263(5)
13.4.1 Marker-Assisted Reverse Breeding (MARB)
266(2)
Further Reading
268(1)
14 Quantitative Genetics
269(32)
14.1 Principles of Biometrical Genetics
269(5)
14.1.1 Multiple-Factor Hypothesis (Nilsson-Ehle)
269(5)
14.2 Models, Assumptions and Predictions
274(1)
14.2.1 Partition of Variance Components
274(1)
14.2.2 Linearity
275(1)
14.2.3 The Infinitesimal Model
275(1)
14.3 Types of Gene Action
275(11)
14.3.1 Quantifying Gene Action
277(1)
14.3.2 Population Mean
278(1)
14.3.3 Phenotypic Variance
279(3)
14.3.4 Breeding Value
282(1)
14.3.5 Heritability
282(2)
14.3.6 Estimating Additive Variance and Heritability
284(2)
14.4 Models for Combining Ability Analysis
286(5)
14.4.1 Biparental Progenies (BIP)
286(1)
14.4.2 Polycross
287(1)
14.4.3 Topcross
288(1)
14.4.4 North Carolina Designs
288(3)
14.4.5 Diallels
291(1)
14.5 Multiple Regression Analysis
291(2)
14.5.1 Regression Models
292(1)
14.6 Stability Analysis
293(3)
14.6.1 Static Concept
293(1)
14.6.2 Dynamic Concept
294(1)
14.6.3 Regression Approaches
295(1)
14.7 Genetic Architecture of Quantitative Traits
296(2)
Further Reading
298(3)
Part IV Specialized Breeding
15 Heterosis
301(28)
15.1 Historical Aspects
302(2)
15.2 Types of Heterosis
304(5)
15.2.1 Dominance Hypothesis
305(1)
15.2.2 Overdominance Hypothesis
305(1)
15.2.3 Heterosis and Epistasis
306(1)
15.2.4 Epigenetic Component to Heterosis
307(2)
15.3 Physiological Basis
309(1)
15.4 Molecular Basis
310(2)
15.5 Inbreeding Depression
312(3)
15.6 Prediction of Heterosi s
315(3)
15.6.1 Phenotypic Data-Based Prediction of Heterosis
315(1)
15.6.2 Molecular Marker-Based Prediction of Heterosis
316(2)
15.7 Achievements by Heterosis
318(10)
15.7.1 Heterosis Breeding in Wheat
318(4)
15.7.2 Heterosis Breeding in Rice
322(4)
15.7.3 Heterosis Breeding in Maize
326(2)
Further Reading
328(1)
16 Induced Mutations and Polyploidy Breeding
329(42)
16.1 Mutation Breeding
329(15)
16.1.1 History
330(1)
16.1.2 Mutagenic Agents
330(2)
16.1.3 Physical Mutagenesis
332(3)
16.1.4 Chemical Mutagenesis
335(1)
16.1.5 Types of Mutations
336(2)
16.1.6 Practical Considerations
338(1)
16.1.7 Mutation Breeding Strategy
339(2)
16.1.8 In Vitro Mutagenesis
341(1)
16.1.9 Gamma Gardens or Atomic Gardens
341(3)
16.2 Factors Affecting Radiation Effects
344(2)
16.2.1 Direct and Indirect Effects
344(1)
16.2.2 Biological Effects
345(1)
16.3 Molecular Mutation Breeding
346(6)
16.3.1 TILLING and EcoTILLING
347(2)
16.3.2 Site-Directed Mutagenesis
349(1)
16.3.3 MutMap
350(2)
16.4 The FAO/IAEA Joint Venture for Nuclear Agriculture
352(6)
16.4.1 Mutation Breeding in Different Countries
354(4)
16.5 Polyploidy Breeding
358(12)
16.5.1 Types of Changes in Chromosome Number
359(5)
16.5.2 Methods for Inducing Polyploidy
364(2)
16.5.3 Molecular Consequences of Polyploidy
366(1)
16.5.4 Molecular tools for Exploring Polyploidy Genomes
367(3)
Further Reading
370(1)
17 Distant Hybridization
371(8)
17.1 Barriers in Production of Distant Hybrids
373(4)
17.1.1 Pre-zygotic Incompatibility
373(1)
17.1.2 Post-zygotic Incompatibility
374(1)
17.1.3 Failure of Zygote Formation and Development
374(1)
17.1.4 Embryonic Incompatibility and Embryo Rescue
375(1)
17.1.5 Transgressive Segregation
376(1)
17.2 Nuclear-Cytoplasmic Interactions
377(1)
Further Reading
378(1)
18 Host Plant Resistance Breeding
379(34)
18.1 Concepts in Insect and Pathogen Resistance
380(7)
18.1.1 Host Defence Responses to Pathogen Invasions
385(1)
18.1.2 Vertical and Horizontal Resistance
385(2)
18.2 Biochemical and Molecular Mechanisms
387(3)
18.2.1 Systemic Acquired Resistance (SAR)
387(1)
18.2.2 Induced Systemic Resistance (ISR)
388(2)
18.3 Qualitative and Quantitative Resistance
390(5)
18.3.1 Genes for Qualitative Resistance
392(1)
18.3.2 Genes for Quantitative Resistance
393(2)
18.4 Pathogen Detection and Response
395(2)
18.5 Signal Transduction
397(2)
18.5.1 Resistance Through Multiple Signalling Mechanisms
398(1)
18.6 Classical Breeding Strategies
399(3)
18.6.1 Backcross Breeding
399(1)
18.6.2 Recurrent Selection
400(1)
18.6.3 Multi-stage Selection
401(1)
18.7 Marker-Assisted Breeding Strategies
402(6)
18.7.1 Monogenic vs. QTLs
403(2)
18.7.2 Marker-Assisted Backcross Breeding (MABC)
405(3)
18.8 Modern Approaches to Biotic Stress Tolerance
408(4)
Further Reading
412(1)
19 Breeding for Abiotic Stress Adaptation
413(44)
19.1 Types of Abiotic Stresses
414(4)
19.1.1 Drought Tolerance
415(1)
19.1.2 Salinity Tolerance
416(1)
19.1.3 Temperature Tolerance
416(1)
19.1.4 Macro-and Microelements
417(1)
19.2 Physiological and Biochemical Responses
418(4)
19.2.1 Physiological Responses
419(2)
19.2.2 Biochemical Responses
421(1)
19.3 Breeding for Abiotic Stresses
422(10)
19.3.1 Breeding for Drought ToleranceAVUE
423(2)
19.3.2 Photosynthesis Under Drought Stress
425(3)
19.3.3 Breeding for Heat Tolerance
428(1)
19.3.4 Drought Versus Heat Tolerance
429(1)
19.3.5 Salinity Tolerance
430(2)
19.4 MAB for Abiotic Stress in Major Crops
432(11)
19.4.1 Rice
440(1)
19.4.2 Wheat
441(1)
19.4.3 Maize
442(1)
19.5 "Omics" and Stress Adaptation
443(12)
19.5.1 Comparative Genomics Tools
443(2)
19.5.2 Prote"omics" to Unravel Stress Tolerance
445(1)
19.5.3 Metabol"omics"
445(2)
19.5.4 Phen"omics": For Dissection of Stress Tolerance
447(8)
Further Reading
455(2)
20 Genotype-by-Environment Interactions
457(18)
20.1 Statistical Models for Assessing G x E Interactions
458(11)
20.1.1 Genotypes and Environments
460(2)
20.1.2 Basic ANOVA and Regression Models
462(1)
20.1.3 Multiplicative Models
463(1)
20.1.4 AMMI Analysis
464(3)
20.1.5 Pattern Analysis
467(1)
20.1.6 GGE Biplot
468(1)
20.2 Measures of Yield Stability
469(2)
20.2.1 Software
471(1)
Further Reading
471(4)
Part V Breeding for New Millennium
21 Tissue Culture
475(18)
21.1 History
475(2)
21.2 Components of Tissue Culture Media
477(5)
21.3 Preparing the Plant Tissue Culture Medium
482(1)
21.4 Transfer of Plant Material to Tissue Culture Medium
483(1)
21.5 Micropropagation
483(1)
21.6 Protoplast Culture
484(2)
21.7 Anther Culture
486(1)
21.8 Somatic Embryogenesis and Synthetic Seeds
486(2)
21.9 Plant Tissue Culture Terminology
488(3)
Further Reading
491(2)
22 Genetic Engineering
493(16)
22.1 Restriction Endonucleases
494(2)
22.2 Techniques for Producing Transgenic Plants
496(4)
22.2.1 Engineering Insect Resistance
497(1)
22.2.2 Engineering Herbicide Tolerance
498(2)
22.3 Site-Directed Nucleases
500(7)
22.3.1 What and Why CRISPR?
502(5)
Further Reading
507(2)
23 Molecular Breeding
509(32)
23.1 Genetic Markers
515(10)
23.1.1 Classical Markers
515(1)
23.1.2 DNA Markers
516(7)
23.1.3 Summary of Major Classes of Genetic Markers
523(2)
23.1.4 Prerequisites for Molecular Breeding
525(1)
23.2 Activities of Marker-Assisted Breeding
525(3)
23.2.1 What Is Mapping?
526(2)
23.3 MAS for Qualitative Traits
528(1)
23.4 MAS for Quantitative Traits
529(4)
23.4.1 QTL Detection (Statistical)
531(2)
23.5 Next-Gen Molecular Breeding
533(6)
23.5.1 Next-Generation Sequencing (NGS)
534(1)
23.5.2 Genotyping-by-Sequencing (GBS)
534(3)
23.5.3 Genetic Maps
537(1)
23.5.4 Physical Maps
538(1)
Further Reading
539(2)
24 Genomics
541(20)
24.1 Genetic Structure of Plant Genomes
543(7)
24.1.1 Nuclear Genomes and Their Size
544(2)
24.1.2 Chemical and Physical Composition of Plant DNA
546(1)
24.1.3 The Packaging of the Genome
546(1)
24.1.4 The Genomic DNA Sequence
547(1)
24.1.5 Model Plant Species
547(1)
24.1.6 Genome Co-linearity/Genome Evolution
548(1)
24.1.7 Whole Genome Sequencing
548(1)
24.1.8 Transposable Elements
548(1)
24.1.9 DNA Microanays (DNA Chip or Biochip)
549(1)
24.2 Genomics-Assisted Breeding
550(7)
24.2.1 Genome Sequencing and Sequence-Based Markers
551(1)
24.2.2 High-Throughput Phenotyping
552(1)
24.2.3 Marker-Trait Association for Genomics-Assisted Breeding
553(1)
24.2.4 From Genotype to Phenotype
554(1)
24.2.5 Post-transcriptional Gene Silencing (PTGS)
554(3)
24.3 The New Systems Biology
557(3)
Further Reading
560(1)
25 Maintenance Breeding and Variety Release
561
25.1 Breeder's Trials
561(2)
25.1.1 Designing Field Trials
562(1)
25.1.2 Crop Registration
562(1)
25.2 Cultivar/Variety Maintenance
563(3)
25.2.1 Maintenance of a Cultivar
563(3)
25.3 DUS Testing
566(3)
25.3.1 Test Guidelines and Requirements
567(1)
25.3.2 Types of Expression of Characteristics
567(1)
25.3.3 DUS Descriptors for Major Crops
568(1)
25.4 Generation System of Seed Multiplication
569(1)
Further Reading
570
Dr Priyadarshan is a prominent Hevea rubber breeder. He began his research career by breeding triticale and wheat. During the 1980s he focused on the in vitro culture of spices. He joined the Rubber Research Institute of India (Rubber Board, Ministry of Commerce, Govt. of India) as a Plant Breeder in 1990 and specialized in breeding Hevea rubber for sub-optimal environments. In 2009, he became the Institutes Deputy Director, and managed its Central Experiment Station until 2016. As a scientist, he has been involved in breeding cereals, spices and Hevea rubber for the past 32 years. During that time, he has published several research papers and chapters in journals and books of international repute. He has authored articles for several important journals, e.g. Advances in Agronomy, Advances in Genetics, and Plant Breeding Reviews, and has edited books on Breeding Plantation Tree Crops, Breeding Major Food Staples, and the Genomicsof Tree Crops, as well as a book on the biology of Hevea rubber.