Muutke küpsiste eelistusi

Plasma Physics: An Introduction 2nd edition [Pehme köide]

(The University of Texas, Austin, USA)
  • Formaat: Paperback / softback, 292 pages, kõrgus x laius: 234x156 mm, kaal: 570 g, 1 Tables, black and white; 45 Line drawings, black and white; 45 Illustrations, black and white
  • Ilmumisaeg: 13-Dec-2022
  • Kirjastus: CRC Press
  • ISBN-10: 1032202513
  • ISBN-13: 9781032202518
Teised raamatud teemal:
  • Formaat: Paperback / softback, 292 pages, kõrgus x laius: 234x156 mm, kaal: 570 g, 1 Tables, black and white; 45 Line drawings, black and white; 45 Illustrations, black and white
  • Ilmumisaeg: 13-Dec-2022
  • Kirjastus: CRC Press
  • ISBN-10: 1032202513
  • ISBN-13: 9781032202518
Teised raamatud teemal:
Encompasses the Lectured Works of a Renowned Expert in the Field

Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This textbook provides a concise and cohesive introduction to plasma physics theory and offers a solid foundation for students of physics wishing to take higher level courses in plasma physics.

Mathematically Rigorous, but Driven by Physics

The author provides an in-depth discussion of the various fluid theories typically used in plasma physics, presenting non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. This second edition has been fully updated to include new content on collisions and magnetic reconnection.

It contains over 80 exercisescarefully selected for their pedagogical valuewith fully worked out solutions available in a separate solutions manual for professors. The material presents a number of applications, and works through specific topics including basic plasma parameters, the theory of charged particle motion in inhomogeneous electromagnetic fields, collisions, plasma fluid theory, electromagnetic waves in cold plasmas, electromagnetic wave propagation through inhomogeneous plasmas, kinetic theory, magnetohydrodynamical fluid theory, and magnetic reconnection.

Features











Discusses fluid theory illustrated by the investigation of Langmuir sheaths





Explores charged particle motion illustrated by the investigation of charged particle trapping in the earths magnetosphere





Examines the MHD and WKB theories
Preface xi
Author xiii
Chapter 1 Plasma Parameters
1(14)
1.1 What Is Plasma?
1(1)
1.2 Brief History Of Plasma Physics
2(1)
1.3 Fundamental Parameters
3(1)
1.4 Plasma Frequency
4(1)
1.5 Debye Shielding
5(1)
1.6 Plasma Parameter
6(2)
1.7 Collisions
8(2)
1.8 Magnetized Plasmas
10(1)
1.9 Plasma Beta
11(1)
1.10 De Broglie Wavelength
11(1)
1.11 Exercises
12(3)
Chapter 2 Charged Particle Motion
15(28)
2.1 Introduction
15(1)
2.2 Motion In Uniform Fields
15(2)
2.3 Method Of Averaging
17(1)
2.4 Guiding Center Motion
18(4)
2.5 Magnetic Drifts
22(1)
2.6 Invariance Of Magnetic Moment
23(2)
2.7 Poincare Invariants
25(1)
2.8 Adiabatic Invariants
25(1)
2.9 Magnetic Mirrors
26(3)
2.10 Van Allen Radiation Belts
29(4)
2.11 Equatorial Ring Current
33(2)
2.12 Second Adiabatic Invariant
35(1)
2.13 Third Adiabatic Invariant
36(2)
2.14 Exercises
38(5)
Chapter 3 Collisions
43(28)
3.1 Introduction
43(1)
3.2 Collision Operator
43(2)
3.3 Two-Body Elastic Collisions
45(1)
3.4 Boltzmann Collision Operator
46(2)
3.5 Collisional Conservation Laws
48(1)
3.6 Two-Body Coulomb Collisions
49(4)
3.7 Rutherford Scattering Cross-Section
53(1)
3.8 Landau Collision Operator
54(3)
3.9 Rosenbluth Potentials
57(1)
3.10 Coulomb Logarithm
58(2)
3.11 Boltzmann H-Theorem
60(3)
3.12 Collision Operator For Maxwellian Distributions
63(2)
3.13 Moments Of Collision Operator
65(2)
3.14 Collision Times
67(2)
3.15 Exercises
69(2)
Chapter 4 Plasma Fluid Theory
71(46)
4.1 Introduction
71(1)
4.2 Moments Of Distribution Function
72(1)
4.3 Moments Of Collision Operator
73(2)
4.4 Moments Of Kinetic Equation
75(2)
4.5 Fluid Equations
77(1)
4.6 Entropy Production
78(1)
4.7 Fluid Closure
78(1)
4.8 Chapman-Enskog Closure
79(3)
4.9 Braginskii Equations
82(1)
4.10 Unmagnetized Limit
83(3)
4.11 Magnetized Limit
86(6)
4.12 Normalization Of Braginskii Equations
92(7)
4.13 Cold-Plasma Equations
99(1)
4.14 Mhd Equations
100(1)
4.15 Drift Equations
101(4)
4.16 Closure In Collisionless Magnetized Plasmas
105(3)
4.17 Langmuir Sheaths
108(4)
4.18 Langmuir Probes
112(2)
4.19 Exercises
114(3)
Chapter 5 Waves In Cold Plasmas
117(20)
5.1 Introduction
117(1)
5.2 Plane Waves In Homogeneous Plasmas
117(2)
5.3 Cold-Plasma Dielectric Permittivity
119(3)
5.4 Cold-Plasma Dispersion Relation
122(1)
5.5 Wave Polarization
123(1)
5.6 Cutoff And Resonance
124(1)
5.7 Waves In Unmagnetized Plasmas
124(2)
5.8 Low-Frequency Wave Propagation
126(2)
5.9 Parallel Wave Propagation
128(3)
5.10 Perpendicular Wave Propagation
131(2)
5.11 Exercises
133(4)
Chapter 6 Waves In Inhomogeneous Plasmas
137(22)
6.1 Introduction
137(1)
6.2 Wkb Solutions
137(4)
6.3 Cutoffs
141(1)
6.4 Resonances
142(4)
6.5 Resonant Layers
146(1)
6.6 Collisional Damping
147(1)
6.7 Pulse Propagation
148(3)
6.8 Ray Tracing
151(2)
6.9 Ionospheric Radio Wave Propagation
153(2)
6.10 Exercises
155(4)
Chapter 7 Waves In Warm Plasmas
159(38)
7.1 Introduction
159(1)
7.2 Landau Damping
159(8)
7.3 Physics Of Landau Damping
167(2)
7.4 Plasma Dispersion Function
169(2)
7.5 Ion Acoustic Waves
171(1)
7.6 Waves In Magnetized Plasmas
172(5)
7.7 Parallel Wave Propagation
177(2)
7.8 Perpendicular Wave Propagation
179(4)
7.9 Electrostatic Waves
183(1)
7.10 Velocity-Space Instabilities
184(3)
7.11 Counter-Propagating Beam Instability
187(1)
7.12 Current-Driven Ion Acoustic Instability
187(3)
7.13 Harris Instability
190(3)
7.14 Exercises
193(4)
Chapter 8 Magnetohydrodynamic Fluids
197(44)
8.1 Introduction
197(1)
8.2 Magnetic Pressure
198(1)
8.3 Flux Freezing
199(1)
8.4 Mhd Waves
200(4)
8.5 Solar Wind
204(2)
8.6 Parker Model Of Solar Wind
206(5)
8.7 Interplanetary Magnetic Field
211(2)
8.8 Mass And Angular Momentum Loss
213(3)
8.9 Mhd Dynamo Theory
216(1)
8.10 Homopolar Disk Dynamo
217(2)
8.11 Slow And Fast Dynamos
219(2)
8.12 Cowling Anti-Dynamo Theorem
221(3)
8.13 Ponomarenko Dynamo
224(4)
8.14 Mhd Shocks
228(2)
8.15 Parallel Mhd Shocks
230(2)
8.16 Perpendicular Mhd Shocks
232(2)
8.17 Oblique Mhd Shocks
234(3)
8.18 Exercises
237(4)
Chapter 9 Magnetic Reconnection
241(36)
9.1 Introduction
241(1)
9.2 Reduced-Mhd Equations
242(2)
9.3 Linearized Reduced-Mhd Equations
244(2)
9.4 Asymptotic Matching
246(4)
9.5 Tearing Modes
250(3)
9.6 Resistive Kink Modes
253(1)
9.7 Constant-ψ Magnetic Islands
254(3)
9.8 Constant-ψ Magnetic Island Evolution
257(9)
9.9 Sweet-Parker Reconnection
266(4)
9.10 Plasmoid Instability
270(3)
9.11 Exercises
273(4)
Bibliography 277(10)
Index 287
Richard Fitzpatrick is a Professor of Physics at the University of Texas at Austin, where he has been a faculty member since 1994. He is a member of the Royal Astronomical Society, a fellow of the American Physical Society, and the author of Maxwells Equations and the Principles of Electromagnetism (2008), An Introduction to Celestial Mechanics (2012), Oscillations and Waves: An Introduction (2013). Plasma Physics: An Introduction (2014), Quantum Mechanics (2015), Theoretical Fluid Mechanics (2017), Oscillations and Waves: An Introduction, 2nd Edition (2019), Thermodynamics and Statistical Mechanics (2020), and Newtonian Dynamics: An Introduction (2022). He earned a Masters degree in physics from the University of Cambridge and a DPhil in astronomy from the University of Sussex.