|
1 Towards Polariton Condensates and Devices |
|
|
1 | (32) |
|
|
1 | (4) |
|
1.2 Bose-Einstein Condensation of Polaritons |
|
|
5 | (6) |
|
1.3 Endeavours to Achieve Polariton Lasers |
|
|
11 | (4) |
|
1.4 More Exciton-Polariton Physics |
|
|
15 | (4) |
|
1.5 Further Polaritons Not Detailed in This Book |
|
|
19 | (14) |
|
|
22 | (11) |
|
2 Fundamentals of Polariton Physics |
|
|
33 | (32) |
|
2.1 The Origin of Polaritons |
|
|
34 | (3) |
|
2.1.1 Fundamental Light-Matter Interaction |
|
|
34 | (2) |
|
|
36 | (1) |
|
2.2 Building-Blocks for Polariton Formation |
|
|
37 | (13) |
|
2.2.1 Excitons in Quantum Wells |
|
|
37 | (8) |
|
|
45 | (5) |
|
2.3 Light-Matter Coupling |
|
|
50 | (15) |
|
|
52 | (3) |
|
2.3.2 Detuning Dependencies of Polariton Modes |
|
|
55 | (7) |
|
|
62 | (3) |
|
3 On the Condensation of Polaritons |
|
|
65 | (22) |
|
3.1 Bosonic Many-Particle Features |
|
|
66 | (8) |
|
3.1.1 Condensation of a Bose Gase |
|
|
66 | (1) |
|
3.1.2 Criteria for Condensation |
|
|
67 | (4) |
|
3.1.3 Dynamical Bose-Einstein Condensation of Polaritons |
|
|
71 | (3) |
|
3.2 Excitation and Relaxation Dynamics |
|
|
74 | (13) |
|
3.2.1 Excitation of Polaritons |
|
|
74 | (1) |
|
3.2.2 Relaxation Towards the Energy Minimum |
|
|
75 | (2) |
|
3.2.3 The Bottleneck Effect |
|
|
77 | (1) |
|
3.2.4 Stimulated Ground-State Scattering |
|
|
78 | (3) |
|
|
81 | (6) |
|
4 The Concept of Polariton Easing |
|
|
87 | (32) |
|
4.1 Polariton Lasers--Electrically-Driven, Please! |
|
|
88 | (7) |
|
|
88 | (2) |
|
4.1.2 The Stimulated Scattering Process |
|
|
90 | (5) |
|
4.2 Comparison with Photon Lasing (Lasing in the Weak-Coupling Regime) |
|
|
95 | (12) |
|
|
95 | (3) |
|
4.2.2 Stimulated Emission, Laser Conditions and Coherence Properties |
|
|
98 | (5) |
|
4.2.3 Bernard-Duraffourg Condition in Semiconductors |
|
|
103 | (1) |
|
4.2.4 Similarities and Differences Between Polariton and Photon Lasers |
|
|
104 | (3) |
|
4.3 Identification of Polariton Lasing |
|
|
107 | (12) |
|
4.3.1 Prerequisites and the Signatures of a Polariton Condensate |
|
|
107 | (5) |
|
4.3.2 Overview on the Typical Experimental Procedure |
|
|
112 | (1) |
|
|
113 | (6) |
|
5 Optical Microcavities for Polariton Studies |
|
|
119 | (20) |
|
5.1 Fabry-Perot Microcavities |
|
|
120 | (5) |
|
5.1.1 Distributed Bragg Reflectors |
|
|
120 | (2) |
|
5.1.2 Planar Microresonator Structures |
|
|
122 | (3) |
|
5.2 Implementation of Quantum Wells |
|
|
125 | (3) |
|
5.2.1 Distribution of Quantum Wells |
|
|
126 | (1) |
|
5.2.2 Number of Quantum Wells |
|
|
127 | (1) |
|
|
127 | (1) |
|
5.3 Optical Properties of Resonators |
|
|
128 | (11) |
|
5.3.1 Free-Spectral Range, Cavity Finesse, Photonic Density of States |
|
|
129 | (2) |
|
|
131 | (3) |
|
|
134 | (5) |
|
6 Technological Realization of Polariton Systems |
|
|
139 | (28) |
|
6.1 Growth and Processing of Microcavity Devices |
|
|
140 | (7) |
|
6.1.1 Epitaxy of Multilayered Structures |
|
|
140 | (1) |
|
6.1.2 Potential Landscapes and Polariton Boxes |
|
|
141 | (2) |
|
6.1.3 Doped Microresonators |
|
|
143 | (1) |
|
|
144 | (3) |
|
6.2 Microcavities for Different Material Systems |
|
|
147 | (20) |
|
6.2.1 D/VI Microresonators |
|
|
149 | (1) |
|
6.2.2 Inorganic Room-Temperature Polariton Systems |
|
|
150 | (2) |
|
|
152 | (2) |
|
6.2.4 Perovskite-Based Exciton-Polariton Systems |
|
|
154 | (1) |
|
6.2.5 Monolayer Transition-Metal Dichalcogenides |
|
|
155 | (4) |
|
|
159 | (8) |
|
7 Spectroscopy Techniques for Polariton Research |
|
|
167 | (28) |
|
|
168 | (4) |
|
7.1.1 Reflection and Transmission Measurements |
|
|
168 | (2) |
|
7.1.2 Micro-Photoluminescence Experiments |
|
|
170 | (1) |
|
7.1.3 Micro-Electroluminescence Studies |
|
|
171 | (1) |
|
7.2 Imaging and Real-Space Spectroscopy |
|
|
172 | (4) |
|
7.2.1 Sample Imaging for Position Monitoring or Interferometry |
|
|
173 | (2) |
|
7.2.2 Spatially-Resolved Spectra |
|
|
175 | (1) |
|
7.3 Fourier-Space-Resolved Spectroscopy |
|
|
176 | (8) |
|
7.3.1 Goniometer-Like Technique |
|
|
177 | (2) |
|
7.3.2 Pinhole Translation Method |
|
|
179 | (2) |
|
7.3.3 Single-Shot Angle-Resolved Acquisition |
|
|
181 | (3) |
|
7.4 Time-Resolved Spectroscopy |
|
|
184 | (11) |
|
7.4.1 Streak-Camera Measurements |
|
|
184 | (2) |
|
7.4.2 Pump-Probe Techniques |
|
|
186 | (5) |
|
|
191 | (4) |
|
8 Optically-Excited Polariton Condensates |
|
|
195 | (46) |
|
8.1 The Observation of Polariton Condensation |
|
|
196 | (7) |
|
8.1.1 Condensate Studies in the Literature |
|
|
196 | (2) |
|
8.1.2 Optical Pumping Schemes |
|
|
198 | (3) |
|
8.1.3 Spectral Features of Polaritons |
|
|
201 | (2) |
|
8.2 Condensation Experimentally Characterized |
|
|
203 | (20) |
|
8.2.1 Real-Space and Momentum-Space Distribution of Condensate Emission |
|
|
203 | (2) |
|
8.2.2 Stimulated Scattering and Macroscopic Ground-State Occupation |
|
|
205 | (8) |
|
8.2.3 Link to BEC via Spatial Coherence Measurements |
|
|
213 | (5) |
|
|
218 | (5) |
|
8.3 Special Condensate Features |
|
|
223 | (18) |
|
8.3.1 Polaritons at Their Extremes |
|
|
226 | (3) |
|
8.3.2 Coherent Polariton Lasers |
|
|
229 | (1) |
|
8.3.3 Superfluidity and Vortices in Condensates |
|
|
230 | (2) |
|
|
232 | (9) |
|
9 Polaritons in External Fields |
|
|
241 | (22) |
|
9.1 Effects of External Fields on Quantum-Well Excitons |
|
|
242 | (8) |
|
9.1.1 Electro-Optical Tuning |
|
|
242 | (3) |
|
9.1.2 Coupling to Strong Transient Electric Fields |
|
|
245 | (1) |
|
9.1.3 Magneto-Optics with Excitons |
|
|
246 | (4) |
|
9.2 Magneto-Polaritons in Microcavity Systems |
|
|
250 | (7) |
|
9.2.1 Manipulating the Excitonic Component of Polaritons |
|
|
250 | (3) |
|
9.2.2 Spinor Condensates in External Magnetic Fields |
|
|
253 | (4) |
|
9.3 Interaction with Transient Fields |
|
|
257 | (6) |
|
9.3.1 Terahertz Radiation and Polaritons |
|
|
257 | (2) |
|
9.3.2 Addressing the Dark Side of Polaritons |
|
|
259 | (1) |
|
|
259 | (4) |
Glossary |
|
263 | (6) |
Index |
|
269 | |