Muutke küpsiste eelistusi

Polarized Light and Optical Systems [Kõva köide]

(University of Arizona, Tucson, USA), (Synopsys, Inc., Pasadena, California, USA), (University of Arizona, Tucson, USA)
  • Formaat: Hardback, 1036 pages, kõrgus x laius: 254x178 mm, kaal: 2300 g, 600 Illustrations, black and white
  • Sari: Optical Sciences and Applications of Light
  • Ilmumisaeg: 09-Aug-2018
  • Kirjastus: CRC Press Inc
  • ISBN-10: 149870056X
  • ISBN-13: 9781498700566
Teised raamatud teemal:
  • Formaat: Hardback, 1036 pages, kõrgus x laius: 254x178 mm, kaal: 2300 g, 600 Illustrations, black and white
  • Sari: Optical Sciences and Applications of Light
  • Ilmumisaeg: 09-Aug-2018
  • Kirjastus: CRC Press Inc
  • ISBN-10: 149870056X
  • ISBN-13: 9781498700566
Teised raamatud teemal:
Polarized Light and Optical Systems presents polarization optics for undergraduate and graduate students in a way which makes classroom teaching relevant to current issues in optical engineering. This curriculum has been developed and refined for a decade and a half at the University of Arizonas College of Optical Sciences. Polarized Light and Optical Systems provides a reference for the optical engineer and optical designer in issues related to building polarimeters, designing displays, and polarization critical optical systems. The central theme of Polarized Light and Optical Systems is a unifying treatment of polarization elements as optical elements and optical elements as polarization elements.

Key Features





Comprehensive presentation of Jones calculus and Mueller calculus with tables and derivations of the Jones and Mueller matrices for polarization elements and polarization effects





Classroom-appropriate presentations of polarization of birefringent materials, thin films, stress birefringence, crystal polarizers, liquid crystals, and gratings





Discussion of the many forms of polarimeters, their trade-offs, data reduction methods, and polarization artifacts





Exposition of the polarization ray tracing calculus to integrate polarization with ray tracing





Explanation of the sources of polarization aberrations in optical systems and the functional forms of these polarization aberrations





Problem sets to build students problem-solving capabilities.

Arvustused

"The authors have produced an excellent text on polarized light and optical systems, which was developed and tested for 15 years at the University of Arizonas College of Optical Sciences. This comprehensive reference is well suited to support a flexible curriculum for undergraduate and graduate students majoring in optical design or engineering...Altogether, it should be favorably received by a wide readership, including applied scientists."

~Axel Mainzer Koenig, CEO, 21st Century Data Analysis, Portland, Oregon, USA

Authors xxi
Acknowledgments xxiii
Preface xxv
How This Book Came to Be xxix
Suggested Curricula xxxi
Guided Tour of the
Chapters
xxxiii
Learning Features xlvii
List of Abbreviations xlix
Chapter 1 Introduction and Overview 1(30)
1.1 Polarized Light
2(1)
1.2 Polarization States and the Poincare Sphere
2(3)
1.3 Polarization Elements and Polarization Properties
5(3)
1.4 Polarimetry and Ellipsometry
8(3)
1.5 Anisotropic Materials
11(1)
1.6 Typical Polarization Problems in Optical Systems
12(5)
1.6.1 Angle Dependence of Polarizers
12(1)
1.6.2 Wavelength and Angle Dependence of Retarders
13(1)
1.6.3 Stress Birefringence in Lenses
14(2)
1.6.4 Liquid Crystal Displays and Projectors
16(1)
1.7 Optical Design
17(9)
1.7.1 Polarization Ray Tracing
20(2)
1.7.2 Polarization Aberrations of Lenses
22(3)
1.7.3 High Numerical Aperture Wavefronts
25(1)
1.8 Comment on Historical Treatments
26(1)
1.9 Reference Books on Polarized Light
27(1)
1.10 Problem Sets
27(2)
References
29(2)
Chapter 2 Polarized Light 31(32)
2.1 The Description of Polarized Light
31(1)
2.2 The Polarization Vector
32(2)
2.3 Properties of the Polarization Vector
34(2)
2.4 Propagation in Isotropic Media
36(1)
2.5 Magnetic Field, Flux, and Polarized Flux
36(1)
2.6 Jones Vectors
37(4)
2.7 Evolution of Overall Phase
41(1)
2.8 Rotation of Jones Vectors
42(1)
2.9 Linearly Polarized Light
42(1)
2.10 Circularly Polarized Light
43(2)
2.11 Elliptically Polarized Light
45(3)
2.12 Orthogonal Jones Vectors
48(1)
2.13 Change of Basis
49(1)
2.14 Addition of Jones Vectors
49(1)
2.15 Polarized Flux Components
50(1)
2.16 Converting Polarization Vectors into Jones Vectors
51(3)
2.17 Decreasing Phase Sign Convention
54(1)
2.18 Increasing Phase Sign Convention
55(1)
2.19 Polarization State of Sources
56(3)
2.20 Problem Sets
59(2)
References
61(2)
Chapter 3 Stokes Parameters and the Poincare Sphere 63(28)
3.1 The Description of Polychromatic Light
63(1)
3.2 Phenomenological Definition of the Stokes Parameters
64(1)
3.3 Unpolarized Light
65(1)
3.4 Partially Polarized Light and the Degree of Polarization
66(4)
3.5 Spectral Bandwidth
70(2)
3.6 Rotation of the Polarization Ellipse
72(1)
3.7 Linearly Polarized Stokes Parameters
73(1)
3.8 Elliptical Polarization Parameters
73(1)
3.9 Orthogonal Polarization States
74(1)
3.10 Stokes Parameter and Jones Vector Sign Conventions
75(1)
3.11 Polarized Fluxes and Conversions between Stokes Parameters and Jones Vectors
75(3)
3.12 The Stokes Parameters' Non-Orthogonal Coordinate System
78(2)
3.13 The Poincare Sphere
80(3)
3.14 Flat Mappings of the Poincare Sphere
83(2)
3.15 Summary and Conclusion
85(1)
3.16 Problem Sets
86(2)
References
88(3)
Chapter 4 Interference of Polarized Light 91(26)
4.1 Introduction
91(1)
4.2 Combining Light Waves
92(1)
4.3 Interferometers
93(2)
4.4 Interference of Nearly Parallel Monochromatic Plane Waves
95(5)
4.5 Interference of Plane Waves at Large Angles
100(2)
4.6 Polarization Considerations in Holography
102(1)
4.7 The Addition of Polarized Beams
103(10)
4.7.1 Addition of Polarized Light of Two Different Frequencies
103(2)
4.7.2 Addition of Polychromatic Beams
105(4)
4.7.3 A Gaussian Wave Packet Example
109(4)
4.8 Conclusion
113(1)
4.9 Problem Sets
113(3)
References
116(1)
Chapter 5 Jones Matrices and Polarization Properties 117(46)
5.1 Introduction
117(1)
5.2 Dichroic and Birefringent Materials
118(1)
5.3 Diattenuation and Retardance
118(5)
5.3.1 Diattenuation
119(1)
5.3.2 Retardance
120(3)
5.4 Jones Matrices
123(5)
5.4.1 Eigenpolarizations
124(3)
5.4.2 Jones Matrix Notation
127(1)
5.4.3 Rotation of Jones Matrices
127(1)
5.5 Polarizer and Diattenuator Jones Matrices
128(5)
5.5.1 Polarizer Jones Matrices
128(2)
5.5.2 Linear Diattenuator Jones Matrices
130(3)
5.6 Retarder Jones Matrices
133(5)
5.6.1 Linear Retarder Jones Matrices
133(4)
5.6.2 Circular Retarder Jones Matrices
137(1)
5.6.3 Vortex Retarders
137(1)
5.7 General Diattenuators and Retarders
138(5)
5.7.1 Linear Diattenuators
139(1)
5.7.2 Elliptical Diattenuators
140(1)
5.7.3 Elliptical Retarders
141(2)
5.8 Non-Polarizing Jones Matrices for Amplitude and Phase Change
143(1)
5.9 Matrix Properties of Jones Matrices
144(9)
5.9.1 Hermitian Matrices: Diattenuation
144(1)
5.9.2 Unitary Matrices and Unitary Transformations: Retarder
145(4)
5.9.3 Polar Decomposition: Separating Retardance from Diattenuation
149(4)
5.10 Increasing Phase Sign Convention
153(1)
5.11 Conclusion
153(2)
5.12 Problem Sets
155(6)
References
161(2)
Chapter 6 Mueller Matrices 163(56)
6.1 Introduction
163(1)
6.2 The Mueller Matrix
164(1)
6.3 Sequences of Polarization Elements
165(1)
6.4 Non-Polarizing Mueller Matrices
165(1)
6.5 Rotating Polarization Elements about the Light Direction
166(2)
6.6 Retarder Mueller Matrices
168(6)
6.7 Polarizer and Diattenuator Mueller Matrices
174(8)
6.7.1 Basic Polarizers
174(3)
6.7.2 Transmittance and Diattenuation
177(3)
6.7.3 Polarizance
180(1)
6.7.4 Diattenuators
180(2)
6.8 Poincare Sphere Operations
182(8)
6.8.1 The Operation of Retarders on the Poincare Sphere
182(4)
6.8.2 The Operation of a Rotating Linear Retarder
186(1)
6.8.3 The Operation of Polarizers and Diattenuators
187(1)
6.8.4 Indicating Polarization Properties
188(2)
6.9 Weak Polarization Elements
190(2)
6.10 Non-Depolarizing Mueller Matrices
192(1)
6.11 Depolarization
193(9)
6.11.1 The Depolarization Index and the Average Degree of Polarization
195(1)
6.11.2 Degree of Polarization Surfaces and Maps
196(2)
6.11.3 Testing for Physically Realizable Mueller Matrices
198(2)
6.11.4 Weak Depolarizing Elements
200(1)
6.11.5 The Addition of Mueller Matrices
201(1)
6.12 Relating Jones and Mueller Matrices
202(9)
6.12.1 Transforming Jones Matrices into Mueller Matrices Using Tensor Product
202(5)
6.12.2 Conversion of Jones Matrices to Mueller Matrices Using Pauli Matrices
207(1)
6.12.3 Transforming Mueller Matrices into Jones Matrices
207(4)
6.13 Ray Tracing with Mueller Matrices
211(2)
6.13.1 Mueller Matrices for Refraction
212(1)
6.13.2 Mueller Matrices for Reflection
212(1)
6.14 The Origins of the Mueller Matrix
213(1)
6.15 Problem Sets
214(4)
References
218(1)
Chapter 7 Polarimetry 219(76)
7.1 Introduction
219(1)
7.2 What Does the Polarimeter See?
220(1)
7.3 Polarimeters
221(1)
7.3.1 Light-Measuring Polarimeters
221(1)
7.3.2 Sample-Measuring Polarimeters
221(1)
7.3.3 Complete and Incomplete Polarimeters
222(1)
7.3.4 Polarization Generators and Analyzers
222(1)
7.4 Mathematics of Polarimetric Measurement and Data Reduction
222(18)
7.4.1 Stokes Polarimetry
222(3)
7.4.2 Measuring Mueller Matrix Elements
225(1)
7.4.3 Mueller Data Reduction Matrix
226(4)
7.4.4 Null Space and the Pseudoinverse
230(10)
7.5 Classes of Polarimeters
240(2)
7.5.1 Time-Sequential Polarimeters
240(1)
7.5.2 Modulated Polarimeters
240(1)
7.5.3 Division of Amplitude
241(1)
7.5.4 Division of Aperture
241(1)
7.5.5 Imaging Polarimeters
241(1)
7.6 Stokes Polarimeter Configurations
242(20)
7.6.1 Simultaneous Polarimetric Measurement
242(7)
7.6.1.1 Division-of-Aperture Polarimetry
242(1)
7.6.1.2 Division-of-Focal-Plane Polarimetry
242(4)
7.6.1.3 Division-of-Amplitude Polarimetry
246(3)
7.6.2 Rotating Element Polarimetry
249(5)
7.6.2.1 Rotating Analyzer Polarimeters
249(1)
7.6.2.2 Rotating Analyzer Plus Fixed Analyzer Polarimeter
250(1)
7.6.2.3 Rotating Retarder and Fixed Analyzer Polarimeters
251(3)
7.6.3 Variable Retarder and Fixed Polarizer Polarimeter
254(1)
7.6.4 Photoelastic Modulator Polarimeters
255(3)
7.6.5 The MSPI and MAIA Imaging Polarimeters
258(1)
7.6.6 Example Atmospheric Polarization Images
259(3)
7.7 Sample-Measuring Polarimeters
262(14)
7.7.1 Polariscopes
263(9)
7.7.1.1 Linear Polariscope
263(3)
7.7.1.2 Circular Polariscope
266(1)
7.7.1.3 Interference Colors
267(2)
7.7.1.4 Polariscope with Tint Plate
269(1)
7.7.1.5 Conoscope
270(2)
7.7.2 Mueller Polarimetry Configurations
272(8)
7.7.2.1 Dual Rotating Retarder Polarimeter
274(1)
7.7.2.2 Polarimetry Near Retroreflection
275(1)
7.8 Interpreting Mueller Matrix Images
276(3)
7.9 Calibrating Polarimeters
279(1)
7.10 Artifacts in Polarimetric Images
280(2)
7.10.1 Pixel Misalignment
281(1)
7.11 Optimizing Polarimeters
282(4)
7.12 Problem Sets
286(5)
Acknowledgments
291(1)
References
291(4)
Chapter 8 Fresnel Equations 295(28)
8.1 Introduction
295(1)
8.2 Propagation of Light
296(2)
8.2.1 Plane Waves and Rays
296(1)
8.2.2 Plane of Incidence
296(1)
8.2.3 Homogeneous and Isotropic Interfaces
297(1)
8.2.4 Light Propagation in Media
297(1)
8.3 Fresnel Equations
298(10)
8.3.1 s-and p-Polarization Components
298(1)
8.3.2 Amplitude Coefficients
299(1)
8.3.3 The Fresnel Equations
300(1)
8.3.4 Intensity Coefficients
301(3)
8.3.5 Normal Incidence
304(1)
8.3.6 Brewster's Angle
305(1)
8.3.7 Critical Angle
306(1)
8.3.8 Intensity and Phase Change with Incident Angle
307(1)
8.3.9 Jones Matrices with Fresnel Coefficients
308(1)
8.4 Fresnel Refraction and Reflection
308(8)
8.4.1 Dielectric Refraction
308(1)
8.4.2 External Reflection
309(2)
8.4.3 Internal Reflection
311(2)
8.4.4 Metal Reflection
313(3)
8.4.4.1 Normal Incidence Reflectance
315(1)
8.4.4.2 Retardance and Diattenuation of Metal at Non-Normal Incidence
315(1)
8.5 Approximate Representations of Fresnel Coefficients
316(2)
8.5.1 Taylor Series for the Fresnel Coefficients
317(1)
8.6 Conclusion
318(1)
8.7 Problem Sets
318(2)
References
320(3)
Chapter 9 Polarization Ray Tracing Calculus 323(36)
9.1 Definition of Polarization Ray Tracing Matrix, P
324(1)
9.2 Formalism of Polarization Ray Tracing Matrix Using Orthogonal Transformation
325(6)
9.3 Retarder Polarization Ray Tracing Matrix Examples
331(3)
9.4 Diattenuation Calculation Using Singular Value Decomposition
334(3)
9.5 Example-Interferometer with a Polarizing Beam Splitter
337(7)
9.5.1 Ray Tracing the Reference Path
338(2)
9.5.2 Ray Tracing through the Test Path
340(1)
9.5.3 Ray Tracing through the Analyzer
341(1)
9.5.4 Cumulative P Matrix for Both Paths
342(2)
9.6 The Addition Form of Polarization Ray Tracing Matrices
344(3)
9.6.1 Combining P Matrices for the Interferometer Example
346(1)
9.7 Example-A Hollow Corner Cube
347(4)
9.8 Conclusion
351(1)
9.9 Problem Sets
352(5)
References
357(2)
Chapter 10 Optical Ray Tracing 359(64)
10.1 Introduction
359(1)
10.2 Goals for Ray Tracing
360(4)
10.3 Specification of Optical Systems
364(4)
10.3.1 Surface Equations
366(1)
10.3.2 Apertures
366(1)
10.3.3 Optical Interfaces
367(1)
10.3.4 Dummy Surfaces
367(1)
10.4 Specifications of Light Beams
368(1)
10.5 System Descriptions
369(7)
10.5.1 Object Plane
369(1)
10.5.2 Aperture Stop
369(1)
10.5.3 Entrance and Exit Pupils
370(1)
10.5.4 Importance of the Exit Pupil
370(2)
10.5.5 Marginal and Chief Rays
372(1)
10.5.6 Numerical Aperture and Lagrange Invariant
373(1)
10.5.7 Etendue
374(1)
10.5.8 Polarized Light
375(1)
10.6 Ray Tracing
376(17)
10.6.1 Ray Intercept
377(1)
10.6.2 Multiplicity of Ray Intercepts with a Surface
378(1)
10.6.3 Optical Path Length
378(2)
10.6.4 Reflection and Refraction
380(1)
10.6.5 Polarization Ray Tracing
381(1)
10.6.6 s-and p-Components
382(1)
10.6.7 Amplitude Coefficients and Interface Jones Matrix
383(2)
10.6.8 Polarization Ray Tracing Matrix
385(8)
10.7 Wavefront Analysis
393(14)
10.7.1 Normalized Coordinates
393(1)
10.7.2 Wavefront Aberration Function
393(1)
10.7.3 Polarization Aberration Function
394(1)
10.7.4 Evaluation of the Aberration Function
395(3)
10.7.5 Seidel Wavefront Aberration Expansion
398(3)
10.7.6 Zernike Polynomials
401(4)
10.7.7 Wavefront Quality
405(1)
10.7.8 Polarization Quality
406(1)
10.8 Non-Sequential Ray Trace
407(1)
10.9 Coherent and Incoherent Ray Tracing
407(3)
10.9.1 Polarization Ray Tracing with Mueller Matrices
409(1)
10.10 The Use of Polarization Ray Tracing
410(1)
10.11 Brief History of Polarization Ray Tracing
411(1)
10.12 Summary and Conclusion
412(1)
10.13 Problem Sets
413(3)
10.14 Appendix: Cell Phone Lens Prescription
416(4)
References
420(3)
Chapter 11 The Jones Pupil and Local Coordinate Systems 423(24)
11.1 Introduction: Local Coordinates for Entrance and Exit Pupils
423(1)
11.2 Local Coordinates
424(2)
11.3 Dipole Coordinates
426(4)
11.4 Double Pole Coordinates
430(6)
11.5 High Numerical Aperture Wavefronts
436(1)
11.6 Converting P Pupils to Jones Pupils
437(2)
11.7 Example: Cell Phone Lens Aberrations
439(1)
11.8 Wavefront Aberration Function Difference between Dipole and Double Pole Coordinates
440(1)
11.9 Conclusion
441(1)
11.10 Problem Sets
442(2)
References
444(3)
Chapter 12 Fresnel Aberrations 447(32)
12.1 Introduction
447(1)
12.2 Uncoated Single-Element Lens
448(7)
12.3 Fold Mirror
455(6)
12.4 Combination of Fold Mirror Systems
461(8)
12.5 Cassegrain Telescope
469(5)
12.6 Fresnel Rhomb
474(1)
12.7 Conclusion
475(1)
12.8 Problem Sets
475(2)
References
477(2)
Chapter 13 Thin Films 479(28)
13.1 Introduction
479(1)
13.2 Single-Layer Thin Films
480(6)
13.2.1 Antireflection Coatings
482(3)
13.2.2 Ideal Single-Layer Antireflection Coating
485(1)
13.2.3 Metal Beam Splitters
485(1)
13.3 Multilayer Thin Films
486(11)
13.3.1 Algorithms
487(1)
13.3.2 Quarter and Half Wave Films
488(1)
13.3.3 Reflection-Enhancing Coatings
489(3)
13.3.4 Polarizing Beam Splitters
492(5)
13.4 Contributions to Wavefront Aberrations
497(2)
13.5 Phase Discontinuities
499(2)
13.6 Conclusion
501(1)
13.7 Appendix: Derivation of Single-Layer Equations
502(2)
13.8 Problem Sets
504(1)
References
505(2)
Chapter 14 Jones Matrix Data Reduction with Pauli Matrices 507(36)
14.1 Introduction
507(2)
14.2 Pauli Matrices and Jones Matrices
509(6)
14.2.1 Pauli Matrix Identities
509(1)
14.2.2 Expansion in a Sum of Pauli Matrices
510(1)
14.2.3 Pauli Sign Convention
511(1)
14.2.4 Pauli Coefficients of a Polarization Element Rotated about the Optical Axis
511(2)
14.2.5 Eigenvalues and Eigenvectors and Matrix Functions for the Pauli Sum Form
513(1)
14.2.6 Canonical Summation Form
514(1)
14.3 Sequences of Polarization Elements
515(3)
14.4 Exponentiation and Logarithms of Matrices
518(11)
14.4.1 Exponentiation of Matrices
518(1)
14.4.2 Logarithms of Matrices
519(1)
14.4.3 Retarder Matrices
520(1)
14.4.4 Diattenuator Matrices
521(2)
14.4.5 Polarization Properties of Homogeneous Jones Matrices
523(6)
14.5 Elliptical Retarders and the Retarder Space
529(2)
14.6 Polarization Properties of Inhomogeneous Jones Matrices
531(2)
14.7 Diattenuation Space and Inhomogeneous Polarization Elements
533(2)
14.7.1 Superposing the Diattenuation and Retardance Spaces
534(1)
14.8 Weak Polarization Elements
535(1)
14.9 Summary and Conclusion
536(1)
14.10 Problem Sets
537(3)
References
540(3)
Chapter 15 Paraxial Polarization Aberrations 543(50)
15.1 Introduction
543(2)
15.2 Polarization Aberrations
545(5)
15.2.1 Interaction of Weakly Polarizing Jones Matrices
546(2)
15.2.2 Polarization of a Sequence of Weakly Polarizing Ray Intercepts
548(2)
15.3 Paraxial Polarization Aberrations
550(10)
15.3.1 Paraxial Angle and Plane of Incidence
550(3)
15.3.2 Paraxial Diattenuation and Retardance
553(1)
15.3.3 Diattenuation Defocus
553(2)
15.3.4 Diattenuation Defocus and Retardance Defocus
555(1)
15.3.5 Diattenuation and Retardance across the Field of View
556(1)
15.3.6 Polarization Tilt and Piston
557(1)
15.3.7 Binodal Polarization
558(1)
15.3.8 Summation of Paraxial Polarization Aberrations over Surfaces
558(2)
15.4 Paraxial Polarization Analysis of a Seven-Element Lens System
560(7)
15.5 Higher-Order Polarization Aberrations
567(13)
15.5.1 Electric Field Aberrations
568(4)
15.5.2 Orientors
572(6)
15.5.3 Diattenuation and Retardance
578(2)
15.6 Polarization Aberration Measurements
580(3)
15.7 Summary and Conclusion
583(1)
15.8 Appendix
583(6)
15.8.1 Paraxial Optics
583(2)
15.8.2 Setting Up the Optical System
585(1)
15.8.3 The Paraxial Ray Trace
586(1)
15.8.4 Reduced Thicknesses and Angles
587(1)
15.8.5 Paraxial Skew Rays
588(1)
15.7 Problem Sets
589(3)
References
592(1)
Chapter 16 Image Formation with Polarization Aberration 593(36)
16.1 Introduction
593(1)
16.2 Discrete Fourier Transformation
594(4)
16.3 Jones Exit Pupil and Jones Pupil Function
598(3)
16.4 Amplitude Response Matrix (ARM)
601(2)
16.5 Mueller Point Spread Matrix (MPSM)
603(2)
16.6 The Scale of the ARM and MPSM
605(2)
16.7 Polarization Structure of Images
607(1)
16.8 Optical Transfer Matrix (OTM)
608(2)
16.9 Example-Polarized Pupil with Unpolarized Object
610(4)
16.10 Example-Solid Corner Cube Retroreflector
614(4)
16.11 Example-Critical Angle Corner Cube Retroreflector
618(4)
16.12 Discussion and Conclusion
622(1)
16.13 Problem Sets
623(4)
References
627(2)
Chapter 17 Parallel Transport and the Calculation of Retardance 629(24)
17.1 Introduction
629(2)
17.1.1 Purpose of the Proper Retardance Calculation
631(1)
17.2 Geometrical Transformations
631(9)
17.2.1 Rotation of Local Coordinates: Polarimeter Viewpoint
631(2)
17.2.2 Non-Polarizing Optical Systems
633(1)
17.2.3 Parallel Transport of Vectors
634(2)
17.2.4 Parallel Transport of Vectors with Reflection
636(1)
17.2.5 Parallel Transport Matrix, Q
636(4)
17.3 Canonical Local Coordinates
640(2)
17.4 Proper Retardance Calculations
642(1)
17.4.1 Definition of the Proper Retardance
642(1)
17.5 Separating Geometric Transformations from P
642(3)
17.5.1 The Proper Retardance Algorithm for P, Method 1
643(1)
17.5.2 The Proper Retardance Algorithm for P, Method 2
644(1)
17.5.3 Retardance Range
645(1)
17.6 Examples
645(4)
17.6.1 Ideal Reflection at Normal Incidence
646(1)
17.6.2 An Aluminum-Coated Three-Fold Mirror System Example
647(2)
17.7 Conclusion
649(1)
17.8 Problem Sets
649(2)
References
651(2)
Chapter 18 A Skew Aberration 653(16)
18.1 Introduction
653(1)
18.2 Definition of Skew Aberration
654(1)
18.3 Skew Aberration Algorithm
655(3)
18.4 Lens Example-U.S. Patent 2,896,506
658(2)
18.5 Skew Aberration in Paraxial Ray Trace
660(2)
18.6 Example of Paraxial Skew Aberration
662(1)
18.7 Skew Aberration's Effect on PSF
663(2)
18.8 PSM for U.S. Patent 2,896,506
665(1)
18.9 Statistics-CODE V Patent Library
666(1)
18.10 Conclusion
667(1)
18.11 Problem Sets
667(1)
References
668(1)
Chapter 19 Birefringent Ray Trace 669(46)
19.1 Ray Tracing in Birefringent Materials
669(3)
19.2 Description of Electromagnetic Waves in Anisotropic Media
672(1)
19.3 Defining Birefringent Materials
673(6)
19.4 Eigenmodes of Birefringent Materials
679(2)
19.5 Reflections and Refractions at Birefringent Interface
681(13)
19.6 Data Structure for Ray Doubling
694(1)
19.7 Polarization Ray Tracing Matrices for Birefringent Interfaces
695(11)
19.7.1 Case I: Isotropic-to-Isotropic Intercept
698(2)
19.7.2 Case II: Isotropic-to-Birefringent Interface
700(1)
19.7.3 Case III: Birefringent-to-Isotropic Interface
701(2)
19.7.4 Case IV: Birefringent-to-Birefringent Interface
703(3)
19.8 Example: Ray Splitting through Three Biaxial Crystal Blocks
706(1)
19.9 Example: Reflections Inside a Biaxial Cube
707(3)
19.10 Conclusion
710(1)
19.11 Problem Sets
711(2)
References
713(2)
Chapter 20 Beam Combination with Polarization Ray Tracing Matrices 715(26)
20.1 Introduction
715(1)
20.2 Wavefronts and Ray Grids
716(2)
20.3 Co-Propagating Wavefront Combination
718(10)
20.4 Non-Co-Propagating Wavefront Combination
728(2)
20.5 Combining Irregular Ray Grids
730(6)
20.5.1 General Steps to Combine Misaligned Ray Data
730(2)
20.5.2 Inverse-Distance Weighted Interpolation
732(4)
20.6 Conclusion
736(1)
20.7 Problem Sets
737(2)
References
739(2)
Chapter 21 Uniaxial Materials and Components 741(44)
21.1 Optical Design Issues in Uniaxial Materials
741(2)
21.2 Descriptions of Uniaxial Materials
743(2)
21.3 Eigenmodes of Uniaxial Materials
745(1)
21.4 Reflections and Refractions at a Uniaxial Interface
746(3)
21.5 Index Ellipsoid, Optical Indicatrix, and K-and S-Surfaces
749(16)
21.6 Aberrations of Crystal Waveplates
765(6)
21.6.1 A-Plate Aberrations
767(2)
21.6.2 C-Plate Aberrations
769(2)
21.7 Image Formation through an A-Plate
771(6)
21.8 Walk-Off Plate
777(1)
21.9 Crystal Prisms
778(1)
21.10 Problem Sets
779(5)
References
784(1)
Chapter 22 Crystal Polarizers 785(26)
22.1 Introduction to Crystal Polarizers
785(1)
22.2 Materials for Crystal Polarizers
786(1)
22.3 Glan-Taylor Polarizer
787(10)
22.3.1 Limited FOV
787(2)
22.3.2 Multiple Potential Ray Paths
789(4)
22.3.3 Multiple Polarized Wavefronts
793(3)
22.3.4 Polarized Wavefronts Exiting from the Polarizer
796(1)
22.4 Aberrations of the Glan-Taylor Polarizer
797(2)
22.5 Pairs of Glan-Taylor Polarizers
799(5)
22.6 Conclusion
804(1)
22.7 Problem Sets
805(3)
References
808(3)
Chapter 23 Diffractive Optical Elements 811(26)
23.1 Introduction
811(3)
23.2 The Grating Equation
814(4)
23.3 Ray Tracing DOES
818(11)
23.3.1 Reflection Diffractive Gratings
818(4)
23.3.2 Wire Grid Polarizers
822(3)
23.3.3 Diffractive Retarders
825(1)
23.3.4 Diffractive Subwavelength Antireflection Coatings
826(3)
23.4 Summary of the RCWA Algorithm
829(3)
23.5 Problem Sets
832(2)
Acknowledgments
834(1)
References
834(3)
Chapter 24 Liquid Crystal Cells 837(42)
24.1 Introduction
837(1)
24.2 Liquid Crystals
838(3)
24.2.1 Dielectric Anisotropy
840(1)
24.3 Liquid Crystal Cells
841(5)
24.3.1 Construction of Liquid Crystal Cells
842(1)
24.3.2 Restoring Forces
843(2)
24.3.3 Liquid Crystal Display: High Contrast Ratio Intensity Modulation
845(1)
24.4 Configurations of Liquid Crystal Cells
846(10)
24.4.1 The Freedericksz Cell
846(1)
24.4.2 90° Twisted Nematic Cell
847(2)
24.4.3 Super Twisted Nematic Cell
849(1)
24.4.4 Vertically Aligned Nematic Cell
850(2)
24.4.5 In-Plane Switching Cell
852(2)
24.4.6 Liquid Crystal on Silicon Cells
854(1)
24.4.7 Blue Phase LC Cells
855(1)
24.5 Polarization Models
856(5)
24.5.1 Extended Jones Matrix Model
856(1)
24.5.2 Single Pass with Polarization Ray Tracing Matrices
857(2)
24.5.3 Multilayer Interference Models
859(1)
24.5.4 Calculation for Liquid Crystal Cell ZLI-1646
859(2)
24.6 Issues in the Construction of LC Cells
861(3)
24.6.1 Spacers
861(1)
24.6.2 Disclinations
861(1)
24.6.3 Pretilt
862(1)
24.6.4 Oscillating Square Wave Voltage
863(1)
24.7 Limitations on LC Cell Performance
864(8)
24.7.1 LC Cell Speed
865(2)
24.7.2 Spectral Variation of Exiting Polarization State
867(1)
24.7.3 Variation of Retardance with Angle of Incidence
867(1)
24.7.4 Compensating LC Cells' Polarization Aberrations with Biaxial Films
868(2)
24.7.5 Polarizer Leakage
870(1)
24.7.6 Depolarization
871(1)
24.8 Testing Liquid Crystal Cells
872(5)
24.8.1 Twisted Nematic Cell Example
873(1)
24.8.2 IPS Tests
874(1)
24.8.3 VAN Cell
875(1)
24.8.4 MVA Cell Test
875(1)
24.8.5 Sheet Retarder Defect
876(1)
24.8.6 Misalignment between Analyzer and Exiting Polarization State
877(1)
24.9 Problem Sets
877(1)
Acknowledgment
878(1)
References
878(1)
Chapter 25 Stress-Induced Birefringence 879(30)
25.1 Introduction to Stress Birefringence
879(2)
25.2 Stress Birefringence in Optical Systems
881(1)
25.3 Theory of Stress-Induced Birefringence
881(2)
25.4 Ray Tracing in Stress Birefringent Components
883(6)
25.5 Ray Tracing through Stress Birefringence Components with Spatially Varying Stress
889(9)
25.5.1 Storage of System Shape
890(1)
25.5.2 Refraction and Reflections
891(1)
25.5.3 Stress Data Format
891(1)
25.5.4 Polarization Ray Tracing Matrix for Spatially Varying Biaxial Stress
892(3)
25.5.5 Examples of Spatially Varying Stress Function
895(3)
25.6 Effects of Stress Birefringence on Optical System Performance
898(7)
25.6.1 Observing Stress Birefringence Using Polariscope
898(3)
25.6.2 Simulations of Injection-Molded Lens
901(2)
25.6.3 Simulation of a Plastic DVD Lens
903(2)
25.7 Conclusion
905(1)
25.8 Problem Sets
906(1)
Acknowledgments
907(1)
References
907(2)
Chapter 26 Multi-Order Retarders and the Mystery of Discontinuities 909(20)
26.1 Introduction
909(1)
26.2 Mystery of Retardance Discontinuity
910(2)
26.3 Retardance Unwrapping for Homogeneous Retarder Systems Using a Simple Dispersion Model
912(4)
26.3.1 Dispersion Model
912(1)
26.3.2 Retardance of the Homogeneous Retarder System
912(2)
26.3.3 Homogeneous Retarder's Trajectory and Retardance Unwrapping in Retarder Space
914(2)
26.4 Discontinuities in Unwrapped Retardance Values for Compound Retarder Systems with Arbitrary Alignment
916(8)
26.4.1 Compound Retarder Jones Matrix Decomposition
917(2)
26.4.2 Compound Retarder's Trajectory in Retarder Space
919(1)
26.4.3 Multiple Modes Exit the Compound Retarder System
920(2)
26.4.4 Compound Retarder Example at 45°
922(2)
26.5 Conclusion
924(1)
26.6 Appendix
925(1)
26.7 Problem Sets
925(2)
References
927(2)
Chapter 27 Summary and Conclusions 929(32)
27.1 Difficult Issues
929(1)
27.2 Polarization Ray Tracing Complications
930(7)
27.2.1 Optical System Description Complications
930(1)
27.2.2 Elliptical Polarization Properties of Ray Paths
931(1)
27.2.3 Optical Path Length and Phase
931(1)
27.2.4 Definition of Retardance
932(1)
27.2.5 Retardance and Skew Aberration
932(1)
27.2.6 Multi-Order Retardance
933(1)
27.2.7 Birefringent Ray Tracing Complications
934(1)
27.2.8 Coherence Simulation
935(1)
27.2.9 Scattering
935(1)
27.2.10 Depolarization
936(1)
27.3 Polarization Ray Tracing Concepts and Methods
937(3)
27.3.1 Jones Matrices and Jones Pupil
937(1)
27.3.2 P Matrix and Local Coordinates
937(1)
27.3.3 Generalization of PSF and OTF
937(1)
27.3.4 Ray Doubling, Ray Trees, and Data Structures
938(1)
27.3.5 Mode Combination
939(1)
27.3.6 Alternative Simulation Methods
940(1)
27.4 Polarization Aberration Mitigation
940(2)
27.4.1 Analyzing Polarization Ray Tracing Output
941(1)
27.5 Comparison of Polarization Ray Tracing and Polarization Aberrations
942(17)
27.5.1 Aluminum Coating and Polarization Aberration Expression
943(2)
27.5.2 Polarization Ray Trace and the Jones Pupil
945(1)
27.5.3 Aberration Expression for the Jones Pupil
946(3)
27.5.4 Diattenuation and Retardance Contributions
949(1)
27.5.5 Design Rules Based on Polarization Aberrations
950(4)
27.5.5.1 Diattenuation at the Center of the Pupil
951(1)
27.5.5.2 Retardance at the Center of the Pupil
951(1)
27.5.5.3 Linear Variation of Diattenuation
952(1)
27.5.5.4 Linear Variation of Retardance, the PSF Shear between the XX-and YY-Components
952(1)
27.5.5.5 The Polarization-Dependent Astigmatism
952(1)
27.5.5.6 The Fraction of Light in the Ghost PSF in XY-and YX-Components
953(1)
27.5.6 Amplitude Response Matrix
954(1)
27.5.7 Mueller Matrix Point Spread Matrices
955(3)
27.5.8 Location of the PSF Image Components
958(1)
References
959(2)
Index 961
Russell Chipman, PhD, is professor of optical sciences at the University of Arizona and a visiting professor at the Center for Optics Research and Education (CORE), Utsunomiya University, Japan. He teaches courses in polarized light, polarimetry, and polarization optical design at both universities. Prof. Chipman received his BS in physics from Massachusetts Institute of Technology (MIT) and his MS and PhD in optical sciences from the University of Arizona. He is a fellow of The Optical Society (OSA) and The International Society for Optics and Photonics (SPIE). He received SPIEs 2007 G.G. Stokes Award for research in Polarimetry and OSAs Joseph Fraunhofer Award/Robert Burley Award for Optical Engineering in 2015. He is a co-investigator on NASA/JPLs Multi-Angle Imager for Aerosols, a polarimeter scheduled for launch into earth orbit around 2021 for monitoring aerosols and pollution in metropolitan areas. He is also developing UV and IR polarimeter breadboards and analysis methods for other NASA exoplanet and remote sensing missions. He has recently focused on developing the Polaris-M polarization ray tracing code, which analyzes optical systems with anisotropic materials, electro-optic modulators, diffractive optical elements, polarized scattered light, and many other effects. His hobbies include hiking, Japanese language, rabbits, and music.



Wai-Sze Tiffany Lam, PhD, was born and raised in Hong Kong. She is currently an optical scientist in Facebook's Oculus Research. She received her BS in optical engineering and her MS and PhD in optical sciences from the University of Arizona. In her research she developed robust optical modeling and polarization simulation for birefringent and optically active optical components, components with stress birefringence, the aberrations in crystal retarders and polarizers, and the modeling of liquid crystal cells. Many of these algorithms form the basis of the commercial ray tracing code, Polaris-M, marketed by Airy Optics.



Garam Young, PhD, graduated with a BS in physics from Seoul National University in Korea and received her doctorate from University of Arizona's College of Optical Sciences, also earning Valedictorian and Outstanding Graduate Student honors. She then developed polarization features and optimization features for CODE V and LightTools with Synopsys in Pasadena, and she currently works as an optical and illumination engineer in the Bay area. Her husband and daughter keep her busy at home.