Boyd and Smith (both at the U. of Utah) have written an authoritative text describing the relaxation processes of polymers and the many methods used for their study that will be essential reading for researchers and graduate students of materials science, physics, and chemistry. The initial 5 chapters are devoted to methodology, with descriptions of mechanical and dielectric relaxation, NMR spectroscopy, dynamic neutron scattering, and molecular dynamics simulations of amorphous polymers. The three stages from primary transition region, secondary (subglass) relaxations, and the transition from melt to glass of amorphous polymers are described in separate chapters, with discussion of the molecular basis of the transition from melt to glass. The volume concludes with discussion of semi-crystalline polymers and miscible polymer blends, including the models for miscible blend dynamics. Two appendices describe the Rouse model and site models for localized relaxation. Annotation ©2008 Book News, Inc., Portland, OR (booknews.com)
A detailed discussion on the different types of relaxation processes and the experimental methods used to study them.
Polymers exhibit a range of physical characteristics, from rubber-like elasticity to the glassy state. These particular properties are controlled at the molecular level by the mobility of the structural constituents. Remarkable changes in mobility can be witnessed with temperature, over narrow, well defined regions, termed relaxation processes. This is an important, unique phenomenon controlling polymer transition behaviour and is described here at an introductory level. The important types of relaxation processes from amorphous to crystalline polymers and polymeric miscible blends are covered, in conjunction with the broad spectrum of experimental methods used to study them. In-depth discussion of molecular level interpretation, including recent advances in atomistic level computer simulations and applications to molecular mechanism elucidation, are discussed. The result is a self-contained, up-to-date approach to polymeric interpretation suitable for researchers in materials science, physics and chemistry interested in the relaxation processes of polymeric systems.