Muutke küpsiste eelistusi

Polymer Engineering Science and Viscoelasticity: An Introduction [Kõva köide]

  • Formaat: Hardback, 448 pages, kõrgus x laius x paksus: 234x156x25 mm, kaal: 824 g, biography
  • Ilmumisaeg: 04-Dec-2007
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387738606
  • ISBN-13: 9780387738604
Teised raamatud teemal:
  • Kõva köide
  • Hind: 130,82 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 448 pages, kõrgus x laius x paksus: 234x156x25 mm, kaal: 824 g, biography
  • Ilmumisaeg: 04-Dec-2007
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387738606
  • ISBN-13: 9780387738604
Teised raamatud teemal:

A mechanics perspective on the mathematics of viscoelasticity and a materials view of the physical mechanisms behind the polymer deformation processes, are provided by this book. The book fills a critical niche. Clearly written and well-organized, the volume includes an introduction to and mathematical description of the basic materials science of polymers, time-temperature-frequency dependence, and unique deformation mechanisms of polymers.



A mechanics perspective on the mathematics of viscoelasticity and a materials view of the physical mechanisms behind the polymer deformation processes, are provided by this book. The book fills a critical niche. Clearly written and well-organized, the volume includes an introduction to and mathematical description of the basic materials science of polymers, time-temperature-frequency dependence, and unique deformation mechanisms of polymers.
1. Introduction
1
1.1. Historical Background
1
1.1.1. Relation between Polymer Science and Mechanics
6
1.1.2. Perspective and Scope of this Text
10
1.2. Review Questions
14
2. Stress and Strain Analysis and Measurement
15
2.1. Some Important and Useful Definitions
15
2.2. Elementary Definitions of Stress, Strain and Material Properties
17
2.3. Typical Stress-Strain Properties
23
2.4. Idealized Stress-Strain Diagrams
27
2.5. Mathematical Definitions of Stress, Strain and Material Characteristics
28
2.6. Principal Stresses
40
2.7. Deviatoric and Dilatational Components of Stress and Strain
42
2.8. Failure (Rupture or Yield) Theories
46
2.9. Atomic Bonding Model for Theoretical Mechanical Properties
49
2.10. Review Questions
52
2.11. Problems
53
3. Characteristics, Applications and Properties of Polymers
55
3.1. General Classification and Types of Polymers
55
3.2. Typical Applications
61
3.3. Mechanical Properties of Polymers
66
3.3.1. Examples of Stress-Strain Behavior of Various Polymers
68
3.4. An Introduction to Polymer Viscoelastic Properties and Characterization
75
3.4.1. Relaxation and Creep Tests
75
3.4.2. Isochronous Modulus vs. Temperature Behavior
79
3.4.3. Isochronous Stress-Strain Behavior – Linearity
82
3.5. Phenomenological Mechanical Models
84
3.5.1. Differential Stress-Strain Relations and Solutions for a Maxwell Fluid
86
3.5.2. Differential Stress-Strain Relations and Solutions for a Kelvin Solid
91
3.5.3. Creep of a Three Parameter Solid and a Four Parameter Fluid
93
3.6. Review Questions
95
3.7. Problems
96
4. Polymerization and Classification
99
4.1. Polymer Bonding
99
4.2. Polymerization
103
4.3. Classification by Bonding Structure Between Chains and Morphology of Chains
108
4.4. Molecular Configurations
111
4.4.1. Isomers
111
4.4.2. Copolymers
114
4.4.3. Molecular Conformations
115
4.5. Random Walk Analysis of Chain End-to-End Distance
118
4.6. Morphology
122
4.7. Molecular Weight
131
4.8. Methods for the Measurement of Molecular Weight
139
4.9. Polymer Synthesis Methods
146
4.10. Spectrography
153
4.11. Review Questions
155
4.12. Problems
157
5. Differential Constitutive Equations
159
5.1. Methods for the Development of Differential Equations for Mechanical Models
160
5.2. A Note on Realistic Creep and Relaxation Testing
165
5.3. Generalized Maxwell and Kelvin Models
168
5.3.1. A Caution on the Use of Generalized Differential Equations
176
5.3.2. Description of Parameters for Various Elementary Mechanical Models
177
5.4. Alfrey's Correspondence Principle
180
5.5. Dynamic Properties - Steady State Oscillation Testing
181
5.5.1. Examples of Storage and Loss Moduli and Damping Ratios
191
5.5.2. Molecular Mechanisms Associated with Dynamic Properties
196
5.5.3. Other Instruments to Determine Dynamic Properties
198
5.6. Review Questions
199
5.7. Problems
199
6. Hereditary Integral Representations of Stress and Strain
201
6.1. Boltzman Superposition Principle
201
6.2. Linearity
208
6.3. Spectral Representation of Viscoelastic Materials
208
6.4. Interrelations Among Various Viscoelastic Properties
211
6.5. Review Questions
217
6.6. Problems
217
7. Time and Temperature Behavior of Polymers
221
7.1. Effect of Temperature on Viscoelastic Properties of Amorphous Polymers
222
7.2. Development of Time Temperature-Superposition-Principle (TTSP)Master Curves
225
7.2.1. Kinetic Theory of Polymers
228
7.2.2. WLF Equation for the Shift Factor
230
7.2.3. Mathematical Development of the TTSP
235
7.2.4. Potential Error for Lack of Vertical Shift
241
7.3. Exponential Series Representation of Master Curves
242
7.3.1. Numerical Approach to Prony Series Representation
245
7.3.2. Determination of the Relaxation Modulus from a Relaxation Spectrum
251
7.4. Constitutive Law with Effective Time
254
7.5. Molecular Mechanisms Associated with Viscoelastic Response
256
7.6. Entropy Effects and Rubber Elasticity
257
7.7. Physical and Chemical Aging
264
7.8. Review Questions
271
7.9. Problems
271
8. Elementary Viscoelastic Stress Analysis for Bars and Beams
275
8.1. Fundamental Concepts
275
8.2. Analysis of Axially Loaded Bars
278
8.3. Analysis of Circular Cylinder Bars in Torsion
282
8.4. Analysis of Prismatic Beams in Pure Bending
284
8.4.1. Stress Analysis of Beams in Bending
284
8.4.2. Deformation Analysis of Beams in Bending
285
8.5. Stresses and Deformation in Beams for Conditions other than Pure Bending
288
8.6. Shear Stresses and Deflections in Beams
296
8.7. Review Questions
297
8.8. Problems
297
9. Viscoelastic Stress Analysis in Two and Three Dimensions
299
9.1 Elastic Stress-Strain Equations
299
9.2 Viscoelastic Stress-Strain Relations
301
9.3 Relationship Between Viscoelastic Moduli (Compliances)
303
9.4 Frequently Encountered Assumptions in Viscoelastic Stress Analysis
304
9.5 General Viscoelastic Correspondence Principle
306
9.5.1 Governing Equations and Solutions for Linear Elasticity
306
9.5.2 Governing Equations and Solutions for Linear Viscoelasticity
308
9.6 Thick Wall Cylinder and Other Problems
311
9.6.1 Elasticity Solution of a Thick Wall Cylinder
311
9.6.2 Elasticity Solution for a Reinforced Thick Wall Cylinder (Solid Propellant Rocket Problem)
314
9.6.3 Viscoelasticity Solution for a Reinforced Thick Wall Cylinder (Solid Propellant Rocket Problem)
316
9.7 Solutions Using Broadband Bulk, Shear and Poisson's Ratio Measured Functions
322
9.8 Review Questions
324
9.9 Problems
325
10. Nonlinear Viscoelasticity 327
10.1. Types of Nonlinearities
327
10.2. Approaches to Nonlinear Viscoelastic Behavior
332
10.3. The Schapery Single-Integral Nonlinear Model
338
10.3.1. Preliminary Considerations
338
10.3.2. The Schapery Equation
340
10.3.3. Determining Material Parameters from a Creep and Creep Recovery Test
348
10.4. Empirical Approach To Time-Stress-Superposition (TSSP)
357
10.5. Review Questions
362
10.6. Problems
363
11. Rate and Time-Dependent Failure: Mechanisms and Predictive Models 365
11.1. Failure Mechanisms in Polymers
366
11.1.1. Atomic Bond Separation Mechanisms
367
11.1.2. Shear Bands
370
11.1.3. Crazing
373
11.2. Rate Dependent Yielding
375
11.3. Delayed or Time Dependent Failure of Polymers
381
11.3.1. A Mathematical Model for Viscoelastic-Plastic Behavior
383
The Nagdi-Murch Model
384
The Crochet Model Time Dependent Yielding Model
386
Long Term Delayed Yielding and Three-Dimensional Problems
392
11.3.2 Analytical Approaches to Creep Rupture
394
Activation Energy Approach to Creep Rupture
394
The Zhurkov Method
397
Cumulative Creep Damage of Polymers
398
Reiner-Weissenberg Criteria for Failure
403
11.4. Review Questions
413
11.5. Problems
413
Appendix A 415
Appendix B 419
References 423
Author Index 437
Index 443