Muutke küpsiste eelistusi

Polymers: Chemistry and Physics of Modern Materials, Third Edition 3rd edition [Pehme köide]

(Heriot-Watt University, Scotland), (Heriot-Watt University, Edinburgh, Scotland)
  • Formaat: Paperback / softback, 520 pages, kõrgus x laius: 234x156 mm, kaal: 712 g, 96 Tables, black and white; 268 Illustrations, black and white
  • Ilmumisaeg: 27-Jul-2007
  • Kirjastus: CRC Press Inc
  • ISBN-10: 0849398134
  • ISBN-13: 9780849398131
Teised raamatud teemal:
  • Pehme köide
  • Hind: 80,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 113,29 €
  • Säästad 29%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Raamatukogudele
  • Formaat: Paperback / softback, 520 pages, kõrgus x laius: 234x156 mm, kaal: 712 g, 96 Tables, black and white; 268 Illustrations, black and white
  • Ilmumisaeg: 27-Jul-2007
  • Kirjastus: CRC Press Inc
  • ISBN-10: 0849398134
  • ISBN-13: 9780849398131
Teised raamatud teemal:
Maintaining the mission of providing students with a relatively inexpensive introductory text on polymer science that illustrates the interdisciplinary nature of the subject, Cowie (editor of the journal Polymer) and Valeria Arrighi (chemistry, Heriot-Watt U., UK) present the third edition of a volume that first appeared in 1973, which has been updated to provide coverage of recent advances in various areas of the field. It now includes discussion of the control over molecular weight, macromolecular structure and architecture, controlled radical polymerizations, metallocene chemistry, preparation of block and graft copolymers, and preparation of multiarmed and dendritic structures. It also has expanded the discussion of areas where polymeric materials can be used in electronic, biological, and medical applications and has added series of problems to each chapter. Annotation ©2007 Book News, Inc., Portland, OR (booknews.com)

Extensively revised and updated to keep abreast of recent advances, Polymers: Chemistry and Physics of Modern Materials, Third Edition continues to provide a broad-based, high-information text at an introductory, reader-friendly level that illustrates the multidisciplinary nature of polymer science. Adding or amending roughly 50% of the material, this new edition strengthens its aim to contribute a comprehensive treatment by offering a wide and balanced selection of topics across all aspects of the chemistry and physics of polymer science, from synthesis and physical properties to applications.

Although the basics of polymer science remain unchanged, significant discoveries in the area of control over molecular weight, macromolecular structure and architecture, and the consequent ability to prepare materials with specific properties receive extensive mention in the third edition. Expanded chapters include controlled radical polymerizations, metallocene chemistry, and the preparation of block and graft copolymers, as well as multiarmed and dendritic structures. Reflecting the growth of polymer applications in industry, the book presents detailed examples to illustrate polymer use in electronic, biological, and medical settings. The authors introduce new understandings of rheological behavior and replace old and outmoded methods of polymer characterization with new and up-to-date techniques. Also new to this edition are a series of problems at the end of each chapter that will test whether the reader has understood the various points and in some cases expand on that knowledge. An accompanying solutions manual is also available for qualifying course adoptions.

Offering the highest quality, comprehensive coverage of polymer science in an affordable, accessible format, Polymers: Chemistry and Physics of Modern Materials, Third Edition continues to provide undergraduate and graduate students and professors with the most complete and current coverage of modern polymer science.

Arvustused

". . . continues the tradition of a well-known respected textbook . . ."



Mark Moloney, Chemistry Research Laboratory, University of Oxford, in Reviews, June 2008, Vol. 9, No. 16, Issue 1

Preface xv
The Authors xvii
Chapter 1 Introduction 1
1.1 Birth of a Concept
1
1.2 Some Basic Definitions
2
1.3 Synthesis of Polymers
4
1.4 Nomenclature
4
1.5 Average Molar Masses and Distributions
8
1.6 Size and Shape
10
1.7 Configuration
12
1.8 The Glass Transition Temperature Tg and the Melting Temperature Tm
14
1.9 Elastomers, Fibers, and Plastics
16
1.10 Fiber-Forming Polymers
18
1.11 Plastics
18
1.12 Thermosetting Polymers
21
1.13 Elastomers
21
Problems
25
References
27
Bibliography
27
Chapter 2 Step-Growth Polymerization 29
2.1 General Reactions
29
2.2 Reactivity of Functional Groups
30
2.3 Carothers Equation
31
2.4 Control of the Molar Mass
32
2.5 Stoichiometric Control of Mn
34
2.6 Kinetics
36
2.7 Molar Mass Distribution in Linear Systems
38
2.8 Average Molar Masses
39
2.9 Characteristics of Step-Growth Polymerization
40
2.10 Typical Step-Growth Reactions
40
2.11 Ring Formation
41
2.12 Nonlinear Step-Growth Reactions
42
2.13 Statistical Derivation
43
2.14 Comparison with Experiment
44
2.15 Polyurethanes
46
2.16 Thermosetting Polymers
49
Problems
52
References
56
Bibliography
56
Chapter 3 Free-Radical Addition Polymerization 57
3.1 Addition Polymerization
57
3.2 Choice of Initiators
57
3.3 Free-Radical Polymerization
58
3.4 Initiators
59
3.4.1 Initiator Efficiency
60
3.5 Chain Growth
62
3.6 Termination
62
3.7 Steady-State Kinetics
63
3.8 High-Conversion Bulk Polymerizations
65
3.9 Chain Transfer
67
3.9.1 Consequences of Chain Transfer
70
3.10 Inhibitors and Retarders
70
3.11 Activation Energies and the Effect of Temperature
72
3.12 Thermodynamics of Radical Polymerization
73
3.13 Heats of Polymerization
76
3.14 Polymerization Processes
76
3.15 Features of Free-Radical Polymerization
79
3.16 Controlled Radical Polymerization
79
3.17 Nitroxide-Mediated Polymerizations
81
3.18 Atom Transfer Radical Polymerization (ATRP)
82
3.19 Reverse ATRP
83
3.20 Degenerative Chain Transfer Reaction (DT)
84
3.21 Reversible Addition Fragmentation Chain Transfer (RAFT)
84
3.22 CRP of Vinyl Chloride
87
3.23 The Kinetics of CRP Processes
87
3.24 Application to Experimental Data
90
Problems
92
References
96
Bibliography
96
Chapter 4 Ionic Polymerization 99
4.1 General Characteristics
99
4.2 Cationic Polymerization
100
4.3 Propagation by Cationic Chain Carriers
101
4.4 Termination
102
4.5 General Kinetic Scheme
103
4.6 Energetics of Cationic Polymerization
103
4.7 Telechelic Polymers via Cationic Polymerization
104
4.8 Cationic Ring Opening Polymerization
105
4.9 Stable Carbocations
107
4.10 Anionic Polymerization
108
4.11 Living Polymers
109
4.12 Kinetics and Molar Mass Distribution in Living Anionic Systems
110
4.13 Metal Alkyl Initiators
114
4.14 Solvent and Gegen Ion Effects
114
4.15 Anionic Ring-Opening Polymerization
114
Problems
116
References
118
Bibliography
119
Chapter 5 Linear Copolymers and Other Architectures 121
5.1 General Characteristics
121
5.2 Composition Drift
122
5.3 The Copolymer Equation
122
5.4 Monomer Reactivity Ratios
123
5.5 Reactivity Ratios and Copolymer Structure
124
5.6 Monomer Reactivities and Chain Initiation
127
5.7 Influence of Structural Effects on Monomer Reactivity Ratios
127
5.7.1 Resonance Effects
127
5.7.2 Polar Effects
129
5.8 The Q–e Scheme
129
5.9 Alternating Copolymers
131
5.10 Block Copolymer Synthesis
133
5.10.1 Transformation Reactions
135
5.10.1.1 Cationic to CRP
137
5.10.1.2 Anionic to CRP
138
5.10.1.3 ROMP to ATRP
139
5.10.1.4 Step-Growth ATRP
139
5.10.2 Coupling Reactions
140
5.10.3 Use of CRP Methods
142
5.11 Graft Copolymer Synthesis
145
5.12 Statistical and Gradient Copolymers
147
5.13 Complex Molecular Architectures
148
5.14 Dendrimers
149
5.14.1 Divergent Growth
150
5.14.2 Convergent Growth
151
5.14.3 Dendrimer Molecular Weight
152
5.14.4 Properties of Dendrimers
153
5.14.5 Applications of Dendrimers
154
Problems
155
References
156
Bibliography
156
Chapter 6 Polymer Stereochemistry 157
6.1 Architecture
157
6.2 Orientation
157
6.3 Configuration
158
6.3.1 Monotactic Polymers
159
6.3.2 Ditactic Polymers
160
6.3.3 Polyethers
160
6.4 Geometric Isomerism
162
6.5 Conformation of Stereoregular Polymers
163
6.6 Factors Influencing Stereoregulation
165
6.7 Homogeneous Stereospecific Cationic Polymerizations
167
6.8 Homogeneous Stereoselective Anionic Polymerizations
168
6.9 Homogeneous Diene Polymerization
170
6.10 Summary
172
Problems
172
References
173
Bibliography
173
Chapter 7 Polymerization Reactions Initiated by Metal Catalysts and Transfer Reactions 175
7.1 Polymerization Using Ziegler–Natta Catalysts
175
7.2 Nature of the Catalyst
176
7.3 Nature of Active Centers
177
7.4 Bimetallic Mechanism
177
7.5 Monometallic Mechanism
178
7.6 Stereoregulation
180
7.7 Ring-Opening Metathesis Polymerization (ROMP)
181
7.8 Monocyclic Monomers
182
7.9 Bicyclo- and Tricyclomonomers
183
7.10 Copolyalkenamers
184
7.11 Living Systems
184
7.12 Group Transfer Polymerization (GTP)
186
7.13 Aldol Group Transfer Polymerization
187
7.14 Metallocene Catalysts
188
7.14.1 Metallocene/Aluminoxane Catalysts
189
7.14.2 Stereoregulation
189
7.14.3 Cationic Metallocenes
192
7.14.4 Mechanism of Stereoregulation
192
7.15 Concluding Remarks
193
Problems
194
References
194
Bibliography
194
Chapter 8 Polymers in Solution 197
8.1 Thermodynamics of Polymer Solutions
197
8.2 Ideal Mixtures of Small Molecules
197
8.3 Nonideal Solutions
199
8.4 Flory–Huggins Theory: Entropy of Mixing
199
8.5 Enthalpy Change on Mixing
203
8.6 Free Energy of Mixing
204
8.7 Limitations of the Flory–Huggins Theory
205
8.8 Phase Equilibria
206
8.9 Flory–Krigbaum Theory
208
8.10 Location of the Theta Temperature
210
8.11 Lower Critical Solution Temperatures
213
8.12 Solubility and the Cohesive Energy Density
216
8.13 Polymer–Polymer Mixtures
219
8.14 Kinetics of Phase Separation
223
Problems
224
References
227
Bibliography
227
Chapter 9 Polymer Characterization — Molar Masses 229
9.1 Introduction
229
9.2 Molar Masses, Molecular Weights, and SI Units
229
9.3 Number-Average Molar Mass Mn
229
9.4 End-Group Assay
230
9.5 Colligative Properties of Solutions
230
9.6 Osmotic Pressure
231
9.7 Light Scattering
234
9.7.1 Scattering from Large Particles
236
9.8 Dynamic Light Scattering
239
9.9 Viscosity
240
9.9.1 Viscosity-Average Molecular Weight
242
9.10 Gel Permeation Chromatography
243
9.11 MALDI
247
Problems
248
References
251
Bibliography
252
Chapter 10 Polymer Characterization — Chain Dimensions, Structures, and Morphology 253
10.1 Average Chain Dimensions
253
10.2 Freely Jointed Chain Model
254
10.3 Short-Range Effects
255
10.4 Chain Stiffness
255
10.5 Treatment of Dilute Solution Data
256
10.5.1 The Second Virial Coefficient
256
10.5.2 Expansion Factor α
257
10.5.3 Flory–Fox Theory
258
10.5.4 Indirect Estimates of Unperturbed Chain Dimensions
259
10.5.5 Influence of Tacticity on Chain Dimensions
259
10.6 Nuclear Magnetic Resonance (NMR)
260
10.7 Infrared Spectroscopy
262
10.8 Thermal Analysis
264
10.9 Wide-Angle and Small-Angle Scattering
265
10.9.1 Wide-Angle X-Ray Scattering
266
10.9.2 Small-Angle X-Ray Scattering (SAXS)
267
10.9.3 Small-Angle Neutron Scattering (SANS)
268
10.10 Microscopy
271
10.10.1 Optical Microscopy
272
10.10.2 Scanning Electron Microscopy
273
10.10.3 Transmission Electron Microscopy
274
10.10.4 Atomic Force Microscopy and Scanning Tunneling Microscopy
274
Problems
276
References
277
Bibliography
277
Chapter 11 The Crystalline State and Partially Ordered Structures 279
11.1 Introduction
279
11.2 Mechanism of Crystallization
279
11.3 Temperature and Growth Rate
281
11.4 Melting
282
11.4.1 Effect of Crystallite Size on Melting
282
11.5 Thermodynamic Parameters
282
11.6 Crystalline Arrangement of Polymers
285
11.6.1 Factors Affecting Crystallinity and Tm
285
11.6.1.1 Symmetry
285
11.6.1.2 Intermolecular Bonding
286
11.6.1.3 Tacticity
287
11.6.1.4 Branching and Molar Mass
287
11.7 Morphology and Kinetics
287
11.8 Morphology
287
11.8.1 Crystallites
288
11.8.2 Single Crystals
288
11.8.3 Hedrites
289
11.8.4 Crystallization from the Melt
289
11.8.5 Spherulites
291
11.9 Kinetics of Crystallization
292
11.9.1 Isothermal Crystallization
293
11.9.2 The Avrami Equation
293
11.9.3 Deviations from Avrami Equation
294
11.10 Block Copolymers
294
11.11 Historical Development of Polymer Liquid Crystals
296
11.12 Liquid Crystalline Phases
297
11.13 Identification of the Mesophases
300
11.14 Lyotropic Main-Chain Liquid Crystal Polymers
302
11.15 Thermotropic Main-Chain Liquid Crystal Polymers
304
11.16 Side-Chain Liquid Crystal Polymers
309
11.17 Chiral Nematic Liquid Crystal Polymers
311
Problems
314
References
318
Bibliography
318
Chapter 12 The Glassy State and Glass Transition 321
12.1 The Amorphous State
321
12.2 The Glassy State
321
12.3 Relaxation Processes in the Glassy State
321
12.4 Glass Transition Region
323
12.4.1 The Glass Transition Temperature, Tg
323
12.4.2 Experimental Demonstration of Tg
324
12.4.2.1 Measurement of Tg from V–T Curves
325
12.4.2.2 Thermal Methods
326
12.4.3 Factors Affecting Tg
327
12.4.3.1 Chain Flexibility
328
12.4.3.2 Steric Effects
328
12.4.3.3 Configurational Effects
330
12.4.3.4 Effect of Cross-Links on Tg
330
12.5 Theoretical Treatments
330
12.5.1 The Free-Volume Theory
331
12.5.2 Gibbs–Di Marzio Thermodynamic Theory
335
12.5.3 Adam–Gibbs Theory
336
12.6 Dependence of Tg on Molar Mass
337
12.7 Structural Relaxation and Physical Aging
338
Problems
339
References
342
Bibliography
343
Chapter 13 Rheology and Mechanical Properties 345
13.1 Introduction to Rheology
345
13.2 The Five Regions of Viscoelastic Behavior
346
13.3 The Viscous Region
347
13.3.1 Shear Dependence of Viscosity
349
13.3.2 Kinetic Units in Polymer Chains
351
13.3.3 Effect of Chain Length
352
13.3.4 Temperature Dependence of η
353
13.3.5 Concentration Dependence of Viscosity
353
13.3.6 Time-Dependent Behavior
354
13.4 Mechanical Properties
355
13.4.1 Interrelation of Moduli
357
13.5 Mechanical Models Describing Viscoelasticity
357
13.6 Linear Viscoelastic Behavior of Amorphous Polymers
360
13.6.1 Creep
360
13.6.2 Stress—Strain Measurements
363
13.6.3 Effect of Temperature on Stress—Strain Response
363
13.6.4 Boltzmann Superposition Principle
364
13.6.5 Stress Relaxation
365
13.7 Dynamic Mechanical and Dielectric Thermal Analysis
366
13.7.1 Dynamic Mechanical Thermal Analysis (DMTA)
366
13.7.2 Dielectric Thermal Analysis (DETA)
369
13.7.3 Comparison Between DMTA and DETA
371
13.8 Time—Temperature Superposition Principle
373
13.9 Dynamic Viscosity
377
13.10 A Molecular Theory for Viscoelasticity
378
13.11 The Reptation Model
380
Problems
382
References
387
Bibliography
388
Chapter 14 The Elastomeric State 389
14.1 General Introduction
389
14.1.1 Natural Rubber
390
14.2 Experimental Vulcanization
391
14.3 Properties of Elastomers
391
14.4 Thermodynamic Aspects of Rubberlike Elasticity
392
14.5 Nonideal Elastomers
394
14.6 Distribution Function for Polymer Conformation
395
14.7 Statistical Approach
398
14.7.1 Experimental Stress—Strain Results
398
14.7.1.1 Simple Extension
398
14.7.1.2 Simple Compression
400
14.7.1.3 Pure Shear
400
14.7.1.4 Large Elastic Deformation
400
14.8 Swelling of Elastomeric Networks
400
14.9 Network Defects
401
14.10 Resilience of Elastomers
403
Problems
405
References
408
Bibliography
408
Chapter 15 Structure—Property Relations 409
15.1 General Considerations
409
15.2 Control of Tm and Tg
409
15.2.1 Chain Stiffness
410
15.2.2 Intermolecular Bonding
411
15.3 Relation Between Tm and Tg
413
15.4 Random Copolymers
413
15.5 Dependence of Tm and Tg on Copolymer Composition
414
15.6 Block Copolymers
417
15.7 Plasticizers
419
15.8 Crystallinity and Mechanical Response
420
15.9 Application to Fibers, Elastomers, and Plastics
422
15.10 Fibers
422
15.10.1 Chemical Requirements
423
15.10.1.1 Linear Polyesters
425
15.10.2 Mechanical Requirements for Fibers
426
15.10.2.1 Spinning Techniques
426
15.10.2.1.1 Melt Spinning
426
15.10.2.1.2 Wet and Dry Spinning
426
15.10.2.2 Drawing, Orientation, and Crystallinity
427
15.10.2.3 Modulus and Chain Stiffness
428
15.10.2.4 Other Factors
428
15.11 Aromatic Polyamides
429
15.12 Polyethylene
431
15.13 Elastomers and Cross-Linked Networks
434
15.13.1 Cross-Linking
435
15.13.2 Creep in Cross-Linked Polymers
435
15.13.3 Additives
435
15.14 Plastics
435
15.14.1 Plastic Selection for Bottle Crate Manufacture
437
15.14.2 Medical Applications
438
15.15 High-Temperature Speciality Polymers
439
15.16 Carbon Fibers
446
15.17 Concluding Remarks
446
Problems
448
References
453
Bibliography
454
Chapter 16 Polymers for the Electronics Industry 455
16.1 Introduction
455
16.2 Polymer Resists for IC Fabrication
455
16.3 The Lithographic Process
456
16.4 Polymer Resists
457
16.4.1 Sensitivity
458
16.4.2 Resolution
459
16.5 Photolithography
459
16.5.1 Positive Photoresists
459
16.5.2 Negative Photoresists
460
16.6 Electron Beam Sensitive Resists
463
16.6.1 Positive Resists
463
16.6.2 Negative Resists
464
16.7 X-ray and Ion Sensitive Resists
464
16.8 Electroactive Polymers
465
16.9 Conduction Mechanisms
466
16.10 Preparation of Conductive Polymers
467
16.11 Polyacetylene
469
16.12 Poly(p-phenylene)
472
16.13 Polyheterocyclic Systems
474
16.13.1 Polypyrrole
475
16.13.2 Sulfur Compounds
475
16.14 Polyaniline
476
16.15 Poly(Phenylene Sulfide)
476
16.16 Poly(1,6-heptadiyne)
476
16.17 Applications
476
16.18 Photonic Applications
477
16.19 Light-Emitting Polymers
477
16.19.1 Applications
478
16.20 Nonlinear Optics
478
16.21 Langmuir—Blodgett Films
481
16.22 Optical Information Storage
483
16.23 Thermorecording on Liquid Crystalline Polymers
486
References
487
Bibliography
487
Index 489


J.M.G. Cowie, Valeria Arrighi