Muutke küpsiste eelistusi

Power Integrity UK ed. [Kõva köide]

  • Formaat: Hardback, 352 pages, kõrgus x laius x paksus: 236x155x23 mm, kaal: 712 g, 200 Illustrations
  • Ilmumisaeg: 16-Dec-2014
  • Kirjastus: McGraw-Hill Professional
  • ISBN-10: 0071830995
  • ISBN-13: 9780071830997
Teised raamatud teemal:
  • Kõva köide
  • Hind: 134,26 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 352 pages, kõrgus x laius x paksus: 236x155x23 mm, kaal: 712 g, 200 Illustrations
  • Ilmumisaeg: 16-Dec-2014
  • Kirjastus: McGraw-Hill Professional
  • ISBN-10: 0071830995
  • ISBN-13: 9780071830997
Teised raamatud teemal:
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.



PROVEN TECHNIQUES FOR GENERATING HIGH-FIDELITY MEASUREMENTSPower Integrity: Measuring, Optimizing, and Troubleshooting Power Related Parameters in Electronics Systems provides field-tested techniques for producing high-fidelity measurements using the appropriate equipment. The book thoroughly discusses measurement guidelines, test instrument selection and use, connecting the equipment to the device being tested, and interpreting the acquired data. The latest electronics technologies and their impact on measurement are discussed. Detailed photographs, screenshots, schematics, and equations are included throughout this practical guide.

Learn how to accurately measure:





Impedance Stability Power supply rejection ratio (PSRR) Reverse transfer and crosstalk Step load response Ripple and noise Edges High-frequency impedance
Acknowledgments xiii
1 Introduction
1(10)
What You Will Learn from This Book
1(1)
Who Will Benefit from This Book
2(1)
The General Format of This Book
2(9)
Why Measure
3(1)
Obtain or Validate Data
3(2)
Design, Selection, and Optimization
5(1)
Troubleshooting
5(2)
Validation or Verification
7(1)
Terminology
7(4)
2 Measurement Philosophy
11(10)
Cause No Damage
11(1)
Measure without Influencing the Measurement
11(1)
Validate the Test Setup and Measurement Limits
12(2)
Measure in the Most Efficient and Direct Way
14(1)
Noninvasive versus Invasive Measurement
14(1)
In situ Measurement
14(1)
Indirect versus Direct Measurement
14(1)
Document Measurements Thoroughly
15(6)
The Test Engineer and Contact Information
15(1)
The Purpose of the Test
16(1)
Simulated or Expected Results if Available
17(1)
The Date and Physical Location of the Testing
18(1)
Operational Test Environment and Conditions
18(1)
The Model of Each Piece of Test Equipment (Including Probes) and Verification That They Are Calibrated
18(1)
Setup Diagram and/or Picture
19(1)
Measurement Annotations and Comments
20(1)
Any Observed Anomalies
20(1)
Summary of the Results and Any Follow-Up Work
20(1)
3 Measurement Fundamentals
21(26)
Sensitivity
21(1)
Noise Floor
22(1)
Dynamic Range
22(5)
Noise Density
27(4)
Signal Averaging
31(2)
Scaling
33(1)
Attenuators
34(1)
Preamplifiers
35(3)
Linear versus Log Display
36(2)
Measurement Domains
38(8)
Frequency Domain
38(1)
Gain and Phase
38(1)
S-Parameters
38(1)
Impedance
39(1)
Time Domain
40(2)
Spectrum Domain
42(2)
Comparing Domains
44(2)
Endnotes
46(1)
4 Test Instruments
47(22)
Frequency Response Analyzers and Vector Network Analyzers
47(3)
OMICRON Lab Bode 100
49(1)
Agilent Technologies E5061B
50(1)
Oscilloscopes
50(9)
Teledyne Lecroy Waverunner 6Zi
51(1)
Rohde & Schwarz RTO1044
52(1)
Tektronix DPO7000
53(1)
Tektronix DPO72004B
54(1)
Teledyne Lecroy Wavemaster 8Zi
55(1)
Tektronix MSO5204
56(1)
Teledyne Lecroy HDO6104
56(2)
Tektronix MDO4104-6
58(1)
OMICRON Lab ISAQ 100
59(1)
Spectrum Analyzers
59(3)
Tektronix RSA5106A
59(1)
Agilent Technologies N9020A
60(1)
Agilent Technologies E5052B
61(1)
Signal Generators
62(1)
Agilent Technologies E8257D
62(1)
TDR/TDT S-Parameter Analyzers
63(6)
Picotest G5100A
63(1)
Tektronix DSA8300/E8010E
63(2)
Teledyne Lecroy SPARQ 4012E
65(1)
Agilent Technologies E5071C
66(3)
5 Probes, Injectors, and Interconnects
69(24)
Voltage Probes
69(22)
Probe Circuit Interaction
70(2)
Flattening the Probe Response
72(2)
Confirming Measurements
74(1)
Selecting a Voltage Probe
75(2)
Passive Probes
77(2)
Active Probes
79(1)
Differential Probes
79(1)
Specialty Probes
80(11)
Other Connections
91(1)
Endnotes
91(2)
6 The Distributed System
93(16)
Noise Paths within a Voltage Regulator
93(8)
Internal Noise
95(1)
Power Supply Rejection Ratio (PSRR)
95(4)
Output Impedance
99(1)
Reverse Transfer and Crosstalk
99(2)
Control Loop Stability
101(2)
Impact on Output Impedance
101(1)
Impact on Noise
102(1)
Impact on PSRR
102(1)
Impact on Reverse Transfer
103(1)
How Poor Stability Propagates through the System
103(5)
Adding the PDNs
106(2)
Endnotes
108(1)
7 Measuring Impedance
109(42)
Selecting a Measurement Method
109(39)
Single-Port Measurements
109(14)
Two-Port Measurements
123(16)
Current Injection Measurements
139(3)
Impedance Adapters
142(6)
Endnotes
148(3)
8 Measuring Stability
151(30)
Stability and Why It Matters
151(28)
Control Loop Basics
151(2)
Gain Margin, Phase Margin, Delay Margin, and Stability Margin
153(1)
Bode Plots and Nyquist Charts
154(5)
Open-Loop Measurement
159(2)
Injection Devices
161(3)
Small Signal versus Large Signal
164(5)
Closed-Loop Measurement
169(1)
ON and OFF Measurements
170(1)
Forward Measurements
171(1)
Minor Loop Gain
171(3)
Noninvasive Closed-Loop Measurement
174(5)
Endnotes
179(2)
9 Measuring PSRR
181(20)
Measurement Methods
182(1)
In-Circuit or Out-of-Circuit
182(1)
Direct or Indirect Measurement
182(1)
Modulating the Input
183(6)
Line Injector
184(4)
Current Injector
188(1)
DC Amplifier
189(1)
Choosing the Measurement Domain
189(11)
VNA
189(1)
Spectrum Analyzer
189(1)
Oscilloscope
190(1)
Probes and Sensitivity
190(10)
Endnotes
200(1)
10 Reverse Transfer and Crosstalk
201(16)
Reverse Transfer of Various Topologies
201(3)
Series Linear Regulators
201(1)
Shunt Regulators
201(2)
POL Regulators
203(1)
Operational Amplifiers
204(1)
Modulating the Output Current
204(1)
Current Injector
205(1)
DC Bias Injector
205(1)
Measuring the Input Current
205(2)
Calibrating the Measurement
205(2)
Measuring the Input Voltage
207(2)
Calibrating the Measurement
209(1)
Indirect Measurement
209(7)
Endnotes
216(1)
11 Measuring Step Load Response
217(16)
Generating the Transient
217(6)
Current Injector versus Electronic Load
217(2)
Slew Rate
219(2)
Current Modulation Waveform
221(2)
Measuring the Response(s)
223(9)
Large Signal versus Small Signal
223(1)
Notes about Averaging
224(2)
Sample Rate and Time Scale
226(6)
Endnotes
232(1)
12 Measuring Ripple and Noise
233(20)
Selecting a Measurement Method
234(1)
In or Out of System
234(1)
Direct or Indirect
234(1)
Time or Spectral Domain
234(1)
Connecting the Equipment
235(2)
Passive Scope Probes
235(1)
Active Scope Probes
236(1)
Direct 50-ω Terminated Connection
236(1)
Choosing the Equipment
237(15)
Averaging and Filtering
252(1)
Endnotes
252(1)
13 Measuring Edges
253(22)
Relating Bandwidth and Rise Time
253(8)
Cascading Rise Times
256(1)
Impact of Filters and Bandwidth Limiting
257(4)
Sampling Rate and Interleaved Sampling
261(3)
Interpolation
264(1)
Coaxial Cables
265(2)
Effects of High-Frequency Losses
265(2)
The Criticality of the Probe Connection
267(2)
Printed Circuit Board Issues
269(1)
Probes
269(4)
Endnotes
273(2)
14 Troubleshooting with Near-Field Probes
275(22)
The Basics of Emissions
275(2)
The Near-Field Probes
277(1)
Probe and Orientation
278(3)
The Measurement Instrument
281(1)
Spectrum Gating
281(14)
Endnotes
295(2)
15 High-Frequency Impedance Measurement
297(22)
Time Domain
297(2)
Time Domain Reflectometry
298(1)
Calibration
299(1)
Reference Plane
300(3)
Setting TDR Pulse Rise Time
303(1)
Interpreting TDR Measurements
304(3)
Estimating Inductance and Capacitance
307(7)
S-Parameter Measurements
314(2)
Endnotes
316(3)
Index 319
Steven M. Sandler (Mesa, AZ) is currently a consultant to AEi Systems LLC, a power electronics firm he founded in 1995. He has developed and taught courses at Motorola University and has published many articles on power circuit modeling for PCIM, PEIN, and Intusoft Online. He holds a BSEE from Pacific Western University, and is the author of Spice3 SMPS Simulation.