Muutke küpsiste eelistusi

Power System Analysis and Design 5th ed. [Kõva köide]

, , (Northeastern University, Boston)
  • Formaat: Hardback, 828 pages, kõrgus x laius x paksus: 234x188x36 mm, kaal: 1379 g, Figures; Tables, black and white
  • Ilmumisaeg: 03-Jan-2011
  • Kirjastus: CENGAGE Learning Custom Publishing
  • ISBN-10: 1111425779
  • ISBN-13: 9781111425777
Teised raamatud teemal:
  • Kõva köide
  • Hind: 205,75 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 828 pages, kõrgus x laius x paksus: 234x188x36 mm, kaal: 1379 g, Figures; Tables, black and white
  • Ilmumisaeg: 03-Jan-2011
  • Kirjastus: CENGAGE Learning Custom Publishing
  • ISBN-10: 1111425779
  • ISBN-13: 9781111425777
Teised raamatud teemal:
The new edition of POWER SYSTEMS ANALYSIS AND DESIGN provides students with an introduction to the basic concepts of power systems along with tools to aid them in applying these skills to real world situations. Physical concepts are highlighted while also giving necessary attention to mathematical techniques. Both theory and modeling are developed from simple beginnings so that they can be readily extended to new and complex situations. The authors incorporate new tools and material to aid students with design issues and reflect recent trends in the field.
Preface xiii
List of Symbols, Units, and Notation
xix
Chapter 1 Introduction
1(30)
Case Study: The Future Beckons: Will the Electric Power Industry Head the Call?
2(8)
1.1 History of Electric Power Systems
10(7)
1.2 Present and Future Trends
17(4)
1.3 Electric Utility Industry Structure
21(1)
1.4 Computers in Power System Engineering
22(2)
1.5 Power World Simulator
24(7)
Chapter 2 Fundamentals
31(59)
Case Study: Making Microgrids Work
32(14)
2.1 Phasors
46(1)
2.2 Instantaneous Power in Single-Phase AC Circuits
47(6)
2.3 Complex Power
53(5)
2.4 Network Equations
58(2)
2.5 Balanced Three-Phase Circuits
60(8)
2.6 Power in Balanced Three-Phase Circuits
68(6)
2.7 Advantages of Balanced Three-Phase Versus Single-Phase Systems
74(16)
Chapter 3 Power Transformers
90(69)
Case Study: PJM Manages Aging Transformer Fleet
91(5)
3.1 The Ideal Transformer
96(6)
3.2 Equivalent Circuits for Practical Transformers
102(6)
3.3 The Per-Unit System
108(8)
3.4 Three-Phase Transformer Connections and Phase Shift
116(5)
3.5 Per-Unit Equivalent Circuits of Balanced Three-Phase Two-Winding Transformers
121(5)
3.6 Three-Winding Transformers
126(4)
3.7 Autotransformers
130(1)
3.8 Transformers with Off-Nominal Turns Ratios
131(28)
Chapter 4 Transmission Line Parameters
159(74)
Case Study: Transmission Line Conductor Design Comes of Age
160(4)
Case Study: Six Utilities Share Their Perspectives on Insulators
164(5)
4.1 Transmission Line Design Considerations
169(5)
4.2 Resistance
174(3)
4.3 Conductance
177(1)
4.4 Inductance: Solid Cylindrical Conductor
178(5)
4.5 Inductance: Single-Phase Two-Wire Line and Three-Phase Three-Wire Line with Equal Phase Spacing
183(2)
4.6 Inductance: Composite Conductors, Unequal Phase Spacing, Bundled Conductors
185(8)
4.7 Series Impedances: Three-Phase Line with Neutral Conductors and Earth Return
193(6)
4.8 Electric Field and Voltage: Solid Cylindrical Conductor
199(2)
4.9 Capacitance: Single-Phase Two-Wire Line and Three-Phase Three-Wire Line Equal Phase Spacing
201(3)
4.10 Capacitance: Stranded Conductors, Unequal Phase Spacing, Bundled Conductors
204(3)
4.11 Shunt Admittances: Lines with Neutral Conductors and Earth Return
207(5)
4.12 Electric Field Strength at Conductor Surfaces and at Ground Level
212(3)
4.13 Parallel Circuit Three-Phase Lines
215(18)
Chapter 5 Transmission Lines: Steady-State Operation
233(61)
Case Study: The ABCs of HVDC Transmission Technologies
234(14)
5.1 Medium and Short Line Approximations
248(6)
5.2 Transmission-Line Differential Equations
254(6)
5.3 Equivalent π Circuit
260(2)
5.4 Lossless Lines
262(9)
5.5 Maximum Power Flow
271(2)
5.6 Line Loadability
273(4)
5.7 Reactive Compensation Techniques
277(17)
Chapter 6 Power Flows
294(85)
Case Study: Future Vision
295(10)
Case Study: Characteristics of Wind Turbine Generators for Wind Power Plants
305(6)
6.1 Direct Solutions to Linear Algebraic Equations: Gauss Elimination
311(4)
6.2 Iterative Solutions to Linear Algebraic Equations: Jacobi and Gauss-Seidel
315(6)
6.3 Iterative Solutions to Nonlinear Algebraic Equations: Newton-Raphson
321(4)
6.4 The Power-Flow Problem
325(6)
6.5 Power-Flow Solution by Gauss-Seidel
331(3)
6.6 Power-Flow Solution by Newton-Raphson
334(9)
6.7 Control of Power Flow
343(6)
6.8 Sparsity Techniques
349(3)
6.9 Fast Decoupled Power Flow
352(1)
6.10 The "DC" Power Flow
353(1)
6.11 Power-Flow Modeling of Wind Generation
354(25)
Design Projects 1-5
366(13)
Chapter 7 Symmetrical Faults
379(40)
Case Study: The Problem of Arcing Faults in Low-Voltage Power Distribution Systems
380(2)
7.1 Series R-L Circuit Transients
382(3)
7.2 Three-Phase Short Circuit---Unloaded Synchronous Machine
385(4)
7.3 Power System Three-Phase Short Circuits
389(3)
7.4 Bus Impedance Matrix
392(8)
7.5 Circuit Breaker and Fuse Selection
400(19)
Design Project 4
417(2)
Chapter 8 Symmetrical Components
419(52)
Case Study: Circuit Breakers Go High Voltage
421(7)
8.1 Definition of Symmetrical Components
428(5)
8.2 Sequence Networks of Impedance Loads
433(8)
8.3 Sequence Networks of Series Impedances
441(2)
8.4 Sequence Networks of Three-Phase Lines
443(2)
8.5 Sequence Networks of Rotating Machines
445(6)
8.6 Per-Unit Sequence Models of Three-Phase Two-Winding Transformers
451(5)
8.7 Per-Unit Sequence Models of Three-Phase Three-Winding Transformers
456(3)
8.8 Power in Sequence Networks
459(12)
Chapter 9 Unsymmetrical Faults
471(45)
Case Study: Fires at U.S. Utilities
472(1)
9.1 System Representation
473(5)
9.2 Single Line-to-Ground Fault
478(5)
9.3 Line-to-Line Fault
483(2)
9.4 Double Line-to-Ground Fault
485(7)
9.5 Sequence Bus Impedance Matrices
492(24)
Design Project 4
512(1)
Design Project 6
513(3)
Chapter 10 System Protection
516(63)
Case Study: The Future of Power Transmission
518(7)
10.1 System Protection Components
525(1)
10.2 Instrument Transformers
526(7)
10.3 Overcurrent Relays
533(4)
10.4 Radial System Protection
537(4)
10.5 Reclosers and Fuses
541(4)
10.6 Directional Relays
545(1)
10.7 Protection of Two-Source System with Directional Relays
546(1)
10.8 Zones of Protection
547(4)
10.9 Line Protection with Impedance (Distance) Relays
551(6)
10.10 Differential Relays
557(2)
10.11 Bus Protection with Differential Relays
559(1)
10.12 Transformer Protection with Differential Relays
560(5)
10.13 Pilot Relaying
565(1)
10.14 Digital Relaying
566(13)
Chapter 11 Transient Stability
579(60)
Case Study: Real-Time Dynamic Security Assessment
581(9)
11.1 The Swing Equation
590(6)
11.2 Simplified Synchronous Machine Model and System Equivalents
596(2)
11.3 The Equal-Area Criterion
598(10)
11.4 Numerical Integration of the Swing Equation
608(5)
11.5 Multimachine Stability
613(8)
11.6 A Two-Axis Synchronous Machine Model
621(4)
11.7 Wind Turbine Machine Models
625(7)
11.8 Design Methods for Improving Transient Stability
632(7)
Chapter 12 Power System Controls
639(51)
Case Study: Overcoming Restoration Challenges Associated with Major Power System Disturbances
642(10)
12.1 Generator-Voltage Control
652(5)
12.2 Turbine-Governor Control
657(6)
12.3 Load-Frequency Control
663(4)
12.4 Economic Dispatch
667(13)
12.5 Optimal Power Flow
680(10)
Chapter 13 Transmission Lines: Transient Operation
690(67)
Case Study: VariStar® Type AZE Surge Arresters
691(4)
Case Study: Change in the Air
695(12)
13.1 Traveling Waves on Single-Phase Lossless Lines
707(3)
13.2 Boundary Conditions for Single-Phase Lossless Lines
710(9)
13.3 Bewley Lattice Diagram
719(5)
13.4 Discrete-Time Models of Single-Phase Lossless Lines and Lumped RLC Elements
724(7)
13.5 Lossy Lines
731(4)
13.6 Multiconductor Lines
735(3)
13.7 Power System Overvoltages
738(7)
13.8 Insulation Coordination
745(12)
Chapter 14 Power Distribution
757(57)
Case Study: The Path of the Smart Grid
759(11)
14.1 Introduction to Distribution
770(2)
14.2 Primary Distribution
772(13)
14.3 Transformers in Distribution Systems
785(1)
14.4 Transformers in Distribution Systems
785(10)
14.5 Shunt Capacitors in Distribution Systems
795(5)
14.6 Distribution Software
800(1)
14.7 Distribution Reliability
801(3)
14.8 Distribution Automation
804(3)
14.9 Smart Grids
807(7)
Appendix 814(4)
Index 818