Muutke küpsiste eelistusi

Practical Data Science with SAP: Machine Learning Techniques for Enterprise Data [Pehme köide]

  • Formaat: Paperback / softback, 344 pages, kõrgus x laius: 233x178 mm
  • Ilmumisaeg: 30-Sep-2019
  • Kirjastus: O'Reilly Media
  • ISBN-10: 1492046442
  • ISBN-13: 9781492046448
  • Pehme köide
  • Hind: 66,63 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 78,39 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 344 pages, kõrgus x laius: 233x178 mm
  • Ilmumisaeg: 30-Sep-2019
  • Kirjastus: O'Reilly Media
  • ISBN-10: 1492046442
  • ISBN-13: 9781492046448
Are you using SAP ERP and eager to unlock the enormous value of its data? With this practical guide, SAP veterans Greg Foss and Paul Modderman show you how to use several data analysis tools to solve interesting problems with your SAP data. Throughout the book, youll follow a fictional company as it tackles real scenarios.

Using actual data to create example code and visualizations, SAP business analysts will learn practical methods for gaining deeper insights into their businesss data. Data engineers and data scientists will explore ways to add SAP data to their analysis processes. Through grounded explanations of both SAP processes and data science tools, youll discover powerful methods for discovering data truths.

Use data to tell revealing stories about your customers Model purchase requisition data using exploratory data analysis Create an anomaly detection system for SAP sales orders Use R and Python to make predictions on sales data Cluster and segment your customers based on their buying habits Use association rule learning to discover customer buying patterns Apply NLP to uncover the most highly actionable customer complaints
Preface vii
1 Introduction
1(12)
Telling Better Stories with Data
1(2)
A Quick Look: Data Science for SAP Professionals
3(3)
A Quick Look: SAP Basics for Data Scientists
6(5)
Getting Data Out of SAP
8(3)
Roles and Responsibilities
11(1)
Summary
11(2)
2 Data Science for SAP Professionals
13(32)
Machine Learning
14(12)
Supervised Machine Learning
15(3)
Unsupervised Machine Learning
18(3)
Semi-Supervised Machine Learning
21(1)
Reinforcement Machine Learning
22(4)
Neural Networks
26(17)
Summary
43(2)
3 SAP for Data Scientists
45(48)
Getting Started with SAP
46(3)
The ABAP Data Dictionary
49(19)
Tables
50(3)
Structures
53(1)
Data Elements and Domains
54(4)
Where-Used
58(4)
ABAP QuickViewer
62(6)
SE16 Export
68(1)
OData Services
68(12)
Core Data Services
80(11)
Summary
91(2)
4 Exploratory Data Analysis with R
93(40)
The Four Phases of EDA
95(1)
Phase 1 Collecting Our Data
96(11)
Importing with R
104(3)
Phase 2 Cleaning Our Data
107(1)
Null Removal
107(1)
Binary Indicators
107(1)
Removing Extraneous Columns
108(1)
Whitespace
108(1)
Numbers
109(1)
Phase 3 Analyzing Our Data
109(12)
DataExplorer
110(3)
Discrete Features
113(4)
Continuous Features
117(4)
Phase 4 Modeling Our Data
121(11)
TensorFlow and Keras
122(1)
Training and Testing Split
122(1)
Shaping and One-Hot Encoding
123(1)
Recipes
124(2)
Preparing Data for the Neural Network
126(4)
Results
130(2)
Summary
132(1)
5 Anomaly Detection with R and Python
133(58)
Types of Anomalies
134(1)
Tools in R
135(39)
AnomalyDetection
135(1)
Anomalize
136(1)
Getting the Data
136(1)
SAP ECC System
137(5)
SAP Net Weaver Gateway
142(11)
SQL Server
153(21)
Finding Anomalies
174(15)
PowerBI and R
174(10)
PowerBI and Python
184(5)
Summary
189(2)
6 Predictive Analytics in R and Python
191(34)
Predicting Sales in R
193(17)
Step 1 Identify Data
193(1)
Step 2 Gather Data
193(1)
Step 3 Explore Data
194(1)
Step 4 Model Data
195(11)
Step 5 Evaluate Model
206(4)
Predicting Sales in Python
210(12)
Step 1 Identify Data
210(1)
Step 2 Gather Data
210(6)
Step 3 Explore Data
216(3)
Step 4 Model Data
219(1)
Step 5 Evaluate Model
220(2)
Summary
222(3)
7 Clustering and Segmentation in R
225(42)
Understanding Clustering and Segmentation
226(7)
RFM
227(1)
Pareto Principle
228(1)
k-Means
229(1)
k-Medoid
230(1)
Hierarchical Clustering
231(2)
Time-Series Clustering
233(1)
Step 1 Collecting the Data
233(1)
Step 2 Cleaning the Data
234(6)
Step 3 Analyzing the Data
240(18)
Revisiting the Pareto Principle
240(1)
Finding Optimal Clusters
241(3)
k-Means Clustering
244(5)
k-Medoid Clustering
249(4)
Hierarchical Clustering
253(2)
Manual RFM
255(3)
Step 4 Report the Findings
258(6)
R Markdown Code
261(1)
R Markdown Knit
262(2)
Summary
264(3)
8 Association Rule Mining
267(22)
Understanding Association Rule Mining
269(1)
Support
269(1)
Confidence
269(1)
Lift
270(1)
Apriori Algorithm
270(1)
Operationalization Overview
270(1)
Collecting the Data
271(5)
Cleaning the Data
276(1)
Analyzing the Data
277(10)
Fiori
282(5)
Summary
287(2)
9 Natural Language Processing with the Google Cloud Natural Language API
289(16)
Understanding Natural Language Processing
290(2)
Sentiment Analysis
290(2)
Translation
292(1)
Preparing the Cloud API
292(6)
Collecting the Data
298(3)
Analyzing the Data
301(2)
Summary
303(2)
10 Conclusion
305(6)
Original Mission
305(1)
Recap
306(2)
Chapter 1 Introduction
306(1)
Chapter 2 Data Science for SAP Professionals
306(1)
Chapter 3 SAP for Data Scientists
306(1)
Chapter 4 Exploratory Data Analysis
307(1)
Chapter 5 Anomaly Detection with R and Python
307(1)
Chapter 6 Prediction with R
307(1)
Chapter 7 Clustering and Segmentation in R
307(1)
Chapter 8 Association Rule Mining
307(1)
Chapter 9 Natural Language Processing with the Google Cloud Natural Language API
308(1)
Tips and Recommendations
308(1)
Be Creative
308(1)
Be Practical
308(1)
Enjoy the Ride
309(1)
Stay in Touch
309(2)
Index 311
Greg Foss fuses battle-tested deep SAP knowledge with a passion for all things data science. His SAP career spans all areas of the technology stack - server, database, security, back and front end development, and functional expertise. As an enterprise architect, he's been the steady guiding hand for years of managing, supporting, and enhancing SAP. As the founder of Blue Diesel Data Science, he focuses years of R, Python, machine learning algorithms, and analytics expertise on finding unique stories to tell from enterprise SAP data. Through Blue Diesel, Greg regularly contributes unique knowledge and insight into the data science blogging community, and is the principal developer and architect of VisionaryRX, an innovative pharmaceutical data dashboarding product.

Paul Modderman loves creating things and sharing them. His tech career has spanned web applications with technologies like .NET, Java, Python, and React to SAP solutions in ABAP, OData and SAPUI5, to cloud technologies in Google Cloud Platform, Amazon Web Services, and Microsoft Azure. He was principal technical architect on Mindset's certified solutions CloudSimple and Analytics for BW. He's an SAP Developer Hero, honored in 2017. Paul is the author of two books: Mindset Perspectives: SAP Development Tips, Tricks, and Projects, and the SAP Press published SAPUI5 and SAP Fiori: The Psychology of UX Design.