Foreword |
|
xv | |
Preface |
|
xvii | |
|
|
|
|
3 | (34) |
|
|
5 | (3) |
|
|
6 | (2) |
|
|
8 | (6) |
|
Building Blocks of Language |
|
|
9 | (3) |
|
|
12 | (2) |
|
Machine Learning, Deep Learning, and NLP: An Overview |
|
|
14 | (2) |
|
|
16 | (15) |
|
|
16 | (3) |
|
|
19 | (3) |
|
|
22 | (6) |
|
Why Deep Learning Is Not Yet the Silver Bullet for NLP |
|
|
28 | (3) |
|
An NLP Walkthrough: Conversational Agents |
|
|
31 | (2) |
|
|
33 | (4) |
|
|
37 | (44) |
|
|
39 | (3) |
|
Text Extraction and Cleanup |
|
|
42 | (7) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
46 | (1) |
|
System-Specific Error Correction |
|
|
47 | (2) |
|
|
49 | (11) |
|
|
50 | (2) |
|
|
52 | (3) |
|
Other Pre-Processing Steps |
|
|
55 | (2) |
|
|
57 | (3) |
|
|
60 | (2) |
|
Classical NLP/ML Pipeline |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
62 | (6) |
|
Start with Simple Heuristics |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
65 | (3) |
|
|
68 | (4) |
|
|
68 | (3) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
73 | (1) |
|
Working with Other Languages |
|
|
73 | (1) |
|
|
74 | (2) |
|
|
76 | (5) |
|
|
81 | (38) |
|
|
84 | (1) |
|
Basic Vectorization Approaches |
|
|
85 | (7) |
|
|
85 | (2) |
|
|
87 | (2) |
|
|
89 | (1) |
|
|
90 | (2) |
|
Distributed Representations |
|
|
92 | (13) |
|
|
94 | (9) |
|
|
103 | (2) |
|
Distributed Representations Beyond Words and Characters |
|
|
105 | (2) |
|
Universal Text Representations |
|
|
107 | (1) |
|
|
108 | (4) |
|
Handcrafted Feature Representations |
|
|
112 | (1) |
|
|
113 | (6) |
|
|
|
|
119 | (42) |
|
|
121 | (2) |
|
A Pipeline for Building Text Classification Systems |
|
|
123 | (3) |
|
A Simple Classifier Without the Text Classification Pipeline |
|
|
125 | (1) |
|
Using Existing Text Classification APIs |
|
|
126 | (1) |
|
One Pipeline, Many Classifiers |
|
|
126 | (8) |
|
|
127 | (4) |
|
|
131 | (1) |
|
|
132 | (2) |
|
Using Neural Embeddings in Text Classification |
|
|
134 | (6) |
|
|
134 | (2) |
|
Subword Embeddings and fastText |
|
|
136 | (2) |
|
|
138 | (2) |
|
Deep Learning for Text Classification |
|
|
140 | (7) |
|
CNNs for Text Classification |
|
|
143 | (1) |
|
LSTMs for Text Classification |
|
|
144 | (1) |
|
Text Classification with Large, Pre-Trained Language Models |
|
|
145 | (2) |
|
Interpreting Text Classification Models |
|
|
147 | (2) |
|
Explaining Classifier Predictions with Lime |
|
|
148 | (1) |
|
Learning with No or Less Data and Adapting to New Domains |
|
|
149 | (3) |
|
|
149 | (1) |
|
Less Training Data: Active Learning and Domain Adaptation |
|
|
150 | (2) |
|
Case Study: Corporate Ticketing |
|
|
152 | (3) |
|
|
155 | (2) |
|
|
157 | (4) |
|
|
161 | (38) |
|
|
162 | (2) |
|
|
164 | (1) |
|
The General Pipeline for IE |
|
|
165 | (1) |
|
|
166 | (3) |
|
|
167 | (1) |
|
|
168 | (1) |
|
|
169 | (9) |
|
|
171 | (4) |
|
NER Using an Existing Library |
|
|
175 | (1) |
|
NER Using Active Learning |
|
|
176 | (1) |
|
|
177 | (1) |
|
Named Entity Disambiguation and Linking |
|
|
178 | (3) |
|
|
179 | (2) |
|
|
181 | (4) |
|
|
182 | (2) |
|
|
184 | (1) |
|
|
185 | (5) |
|
Temporal Information Extraction |
|
|
186 | (1) |
|
|
187 | (2) |
|
|
189 | (1) |
|
|
190 | (3) |
|
|
193 | (6) |
|
|
199 | (42) |
|
|
200 | (2) |
|
|
201 | (1) |
|
|
202 | (3) |
|
|
204 | (1) |
|
|
204 | (1) |
|
A Pipeline for Building Dialog Systems |
|
|
205 | (1) |
|
|
206 | (12) |
|
|
208 | (10) |
|
Deep Dive into Components of a Dialog System |
|
|
218 | (8) |
|
Dialog Act Classification |
|
|
219 | (1) |
|
|
219 | (1) |
|
|
220 | (1) |
|
Dialog Examples with Code Walkthrough |
|
|
221 | (5) |
|
|
226 | (3) |
|
|
227 | (1) |
|
Deep Reinforcement Learning for Dialogue Generation |
|
|
227 | (1) |
|
|
228 | (1) |
|
|
229 | (3) |
|
A Case Study: Recipe Recommendations |
|
|
232 | (4) |
|
Utilizing Existing Frameworks |
|
|
233 | (2) |
|
Open-Ended Generative Chatbots |
|
|
235 | (1) |
|
|
236 | (5) |
|
|
241 | (36) |
|
Search and Information Retrieval |
|
|
243 | (9) |
|
Components of a Search Engine |
|
|
245 | (3) |
|
A Typical Enterprise Search Pipeline |
|
|
248 | (1) |
|
Setting Up a Search Engine: An Example |
|
|
249 | (2) |
|
A Case Study: Book Store Search |
|
|
251 | (1) |
|
|
252 | (6) |
|
Training a Topic Model: An Example |
|
|
256 | (1) |
|
|
257 | (1) |
|
|
258 | (4) |
|
|
258 | (1) |
|
Setting Up a Summarizer: An Example |
|
|
259 | (1) |
|
|
260 | (2) |
|
Recommender Systems for Textual Data |
|
|
262 | (3) |
|
Creating a Book Recommender System: An Example |
|
|
263 | (1) |
|
|
264 | (1) |
|
|
265 | (3) |
|
Using a Machine Translation API: An Example |
|
|
266 | (1) |
|
|
267 | (1) |
|
Question-Answering Systems |
|
|
268 | (3) |
|
Developing a Custom Question-Answering System |
|
|
270 | (1) |
|
Looking for Deeper Answers |
|
|
270 | (1) |
|
|
271 | (6) |
|
|
|
|
277 | (32) |
|
|
279 | (1) |
|
|
280 | (6) |
|
|
286 | (15) |
|
|
286 | (2) |
|
|
288 | (1) |
|
|
288 | (2) |
|
Understanding Twitter Sentiment |
|
|
290 | (2) |
|
|
292 | (4) |
|
Text Representation for SMTD |
|
|
296 | (3) |
|
Customer Support on Social Channels |
|
|
299 | (2) |
|
|
301 | (3) |
|
|
301 | (1) |
|
|
302 | (2) |
|
|
304 | (5) |
|
|
309 | (32) |
|
|
310 | (1) |
|
|
310 | (1) |
|
|
311 | (1) |
|
|
311 | (1) |
|
|
311 | (3) |
|
Building an E-Commerce Catalog |
|
|
314 | (12) |
|
|
314 | (5) |
|
Product Categorization and Taxonomy |
|
|
319 | (4) |
|
|
323 | (2) |
|
Product Deduplication and Matching |
|
|
325 | (1) |
|
|
326 | (8) |
|
|
327 | (2) |
|
Aspect-Level Sentiment Analysis |
|
|
329 | (2) |
|
Connecting Overall Ratings to Aspects |
|
|
331 | (1) |
|
|
332 | (2) |
|
Recommendations for E-Commerce |
|
|
334 | (4) |
|
A Case Study: Substitutes and Complements |
|
|
335 | (3) |
|
|
338 | (3) |
|
10 Healthcare, Finance, and Law |
|
|
341 | (32) |
|
|
341 | (19) |
|
Health and Medical Records |
|
|
343 | (1) |
|
Patient Prioritization and Billing |
|
|
344 | (1) |
|
|
344 | (1) |
|
Clinical Decision Support Systems |
|
|
344 | (1) |
|
|
344 | (2) |
|
Electronic Health Records |
|
|
346 | (9) |
|
Mental Healthcare Monitoring |
|
|
355 | (2) |
|
Medical Information Extraction and Analysis |
|
|
357 | (3) |
|
|
360 | (8) |
|
NLP Applications in Finance |
|
|
362 | (3) |
|
NLP and the Legal Landscape |
|
|
365 | (3) |
|
|
368 | (5) |
|
Part IV Bringing It All Together |
|
|
|
11 The End-to-End NLP Process |
|
|
373 | (36) |
|
Revisiting the NLP Pipeline: Deploying NLP Software |
|
|
374 | (4) |
|
|
376 | (2) |
|
Building and Maintaining a Mature System |
|
|
378 | (12) |
|
|
379 | (1) |
|
Iterating Existing Models |
|
|
380 | (1) |
|
Code and Model Reproducibility |
|
|
381 | (1) |
|
Troubleshooting and Interpretability |
|
|
381 | (3) |
|
|
384 | (1) |
|
Minimizing Technical Debt |
|
|
385 | (1) |
|
Automating Machine Learning |
|
|
386 | (4) |
|
|
390 | (4) |
|
|
390 | (2) |
|
Microsoft Team Data Science Process |
|
|
392 | (2) |
|
Making AI Succeed at Your Organization |
|
|
394 | (6) |
|
|
394 | (1) |
|
Right Problem and Right Expectations |
|
|
395 | (1) |
|
|
396 | (1) |
|
|
397 | (1) |
|
|
398 | (2) |
|
|
400 | (3) |
|
|
403 | (6) |
Index |
|
409 | |