List of Figures |
|
xiii | |
List of Tables |
|
xix | |
Preface |
|
xxi | |
1 Introduction |
|
1 | (19) |
|
1.1 Biotechnology - Its Background and History |
|
|
1 | (7) |
|
1.2 Technology and Laboratory Practice |
|
|
8 | (2) |
|
1.3 Pedagogical Strategy of Biochemical Technology Practice |
|
|
10 | (4) |
|
|
14 | (1) |
|
1.5 Biosafety and Biosafety Levels |
|
|
15 | (5) |
2 Recombinant DNA and Protein Technology |
|
20 | (31) |
|
|
20 | (1) |
|
|
21 | (1) |
|
2.3 Types of Cloning Vectors |
|
|
21 | (6) |
|
|
21 | (2) |
|
2.3.2 Bacteriophages or Phage Lambda |
|
|
23 | (1) |
|
|
24 | (1) |
|
2.3.4 Yeast Artificial Chromosomes (YACs) |
|
|
25 | (2) |
|
|
27 | (4) |
|
2.4.1 Bacterial Expression Systems |
|
|
28 | (1) |
|
2.4.2 Yeast Expression Systems |
|
|
29 | (1) |
|
2.4.3 Baculovirus Expression Systems |
|
|
29 | (1) |
|
2.4.4 Mammalian Expression Systems |
|
|
29 | (1) |
|
2.4.5 Cell Free Expression Systems |
|
|
30 | (1) |
|
|
31 | (5) |
|
|
32 | (1) |
|
2.5.2 The tac and trc Promoters |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
34 | (1) |
|
2.5.5 The Lambda Promoters |
|
|
35 | (1) |
|
2.5.6 Cold-shock Promoters |
|
|
35 | (1) |
|
2.5.7 Non-promoter Regulatory Elements |
|
|
35 | (1) |
|
2.6 Protein Purification Methods |
|
|
36 | (9) |
|
|
38 | (1) |
|
2.6.2 Purification Methods |
|
|
39 | (1) |
|
2.6.3 Affinity Purification |
|
|
40 | (2) |
|
2.6.4 Gel Filtration or Size Exclusion |
|
|
42 | (1) |
|
2.6.5 Salting In/Salting Out |
|
|
42 | (2) |
|
2.6.6 Analytical Centrifugation |
|
|
44 | (1) |
|
2.7 Monitoring Protein Purification |
|
|
45 | (6) |
|
2.7.1 Determination of Protein Concentration |
|
|
45 | (1) |
|
2.7.2 Ultraviolet Absorption |
|
|
46 | (1) |
|
|
46 | (1) |
|
2.7.4 Lowry (Folin-Ciocaltaeu) Method |
|
|
46 | (1) |
|
2.7.5 The Bicinchoninic Acid (BCA) Method |
|
|
46 | (1) |
|
|
47 | (4) |
3 Enzyme Kinetics, Proteomics, and Mass Spectrometry |
|
51 | (52) |
|
3.1 Order and Molecularity |
|
|
52 | (1) |
|
3.2 Important Theories Related to Enzyme Kinetics |
|
|
52 | (5) |
|
|
52 | (2) |
|
3.2.2 Transition State Theory |
|
|
54 | (2) |
|
|
56 | (1) |
|
|
57 | (4) |
|
3.3.1 Catalytic Mechanism |
|
|
58 | (1) |
|
|
58 | (1) |
|
3.3.3 Transition States and Reaction Rates |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
61 | (3) |
|
|
61 | (1) |
|
3.4.2 Michaelis-Menten Analysis |
|
|
62 | (1) |
|
3.4.3 The Significance of Km,kkatandkcat/Km |
|
|
63 | (1) |
|
3.5 Graphs of the Michaelis-Menten Equation |
|
|
64 | (3) |
|
3.5.1 Plotting v Against [ s] |
|
|
64 | (1) |
|
3.5.2 The Double-reciprocal Plot |
|
|
64 | (1) |
|
3.5.3 The Plot of [ S]/v Against [ S] |
|
|
65 | (1) |
|
3.5.4 The Plot of v Against v/a |
|
|
65 | (1) |
|
3.5.5 The Direct Linear Plot |
|
|
66 | (1) |
|
|
67 | (5) |
|
3.6.1 Competitive Inhibition |
|
|
68 | (1) |
|
3.6.2 Noncompetitive Inhibition |
|
|
68 | (1) |
|
3.6.3 Uncompetitive Inhibition |
|
|
69 | (1) |
|
|
70 | (2) |
|
3.6.5 Irreversible Inhibition |
|
|
72 | (1) |
|
3.7 Inhibitory Effect of Substrates |
|
|
72 | (2) |
|
3.7.1 Non-productive Binding |
|
|
72 | (1) |
|
3.7.2 Substrate Inhibition |
|
|
73 | (1) |
|
3.8 General Protocol for an Inhibition Experiment |
|
|
74 | (1) |
|
3.9 Applications of Enzyme Inhibition |
|
|
75 | (1) |
|
3.10 Methodologies for Studying Catalytic Mechanism of the Enzyme |
|
|
75 | (1) |
|
|
76 | (2) |
|
3.11.1 Specific Activation |
|
|
76 | (1) |
|
3.11.2 Hyperbolic Activation and Inhibition |
|
|
77 | (1) |
|
|
78 | (6) |
|
|
79 | (3) |
|
3.12.2 Mass-fingerprinting |
|
|
82 | (2) |
|
|
84 | (19) |
|
|
84 | (19) |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
86 | (1) |
|
3.13.1.4 Ion Source (ionization) |
|
|
87 | (5) |
|
|
92 | (1) |
|
|
92 | (2) |
|
3.13.1.7 Identification and Sequence Determination of Peptides and Proteins |
|
|
94 | (9) |
4 Bioanalytical Techniques |
|
103 | (66) |
|
|
103 | (2) |
|
4.1.1 Requirements for Structure and Function of Biomolecules and Affecting Factors |
|
|
104 | (1) |
|
|
105 | (3) |
|
|
106 | (1) |
|
4.2.2 Use of Sedimentation or Centrifugation Techniques |
|
|
107 | (1) |
|
|
108 | (4) |
|
4.4 Spectroscopic Techniques Used on Biomolecules |
|
|
112 | (33) |
|
|
112 | (1) |
|
4.4.2 Sigma (s) and Pi (p) Orbitals and Bonds |
|
|
112 | (3) |
|
4.4.3 Benzene and Aromatic Molecular Stabilities |
|
|
115 | (1) |
|
4.4.4 Molecular Structure and Transitions |
|
|
116 | (9) |
|
4.4.4.1 Conjugated p Electron System |
|
|
116 | (1) |
|
4.4.4.2 Molecular Features and Electronic Transitions |
|
|
117 | (5) |
|
4.4.4.3 Structure and Optical Properties of Biological Chromophores |
|
|
122 | (3) |
|
4.4.5 Ultraviolet/Visible Absorption Spectroscopy |
|
|
125 | (11) |
|
4.4.6 Fluorescence Spectroscopy |
|
|
136 | (5) |
|
4.4.7 Use of Fluorescence |
|
|
141 | (4) |
|
4.5 Circular Dichroism (CD) |
|
|
145 | (6) |
|
4.5.1 Spectral Characteristics |
|
|
146 | (5) |
|
|
151 | (3) |
|
4.6.1 Analysis of Protein FTIR Data |
|
|
153 | (1) |
|
4.7 Electrophoretic Techniques |
|
|
154 | (15) |
|
4.7.1 Theory of Electrophoresis |
|
|
154 | (3) |
|
|
157 | (1) |
|
|
157 | (1) |
|
4.7.4 Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) |
|
|
158 | (4) |
|
4.7.4.1 Ion Mobility and Protein Stacking |
|
|
160 | (1) |
|
4.7.4.2 What Happens Once the Proteins Have Been Stacked? |
|
|
160 | (1) |
|
4.7.4.3 Buffer Systems Used in Gel Electrophoresis |
|
|
161 | (1) |
|
4.7.4.3.1 Continuous Buffer Systems |
|
|
161 | (1) |
|
4.7.4.3.2 Discontinuous Buffer Systems |
|
|
161 | (1) |
|
|
162 | (1) |
|
4.7.5 Isoelectric Focusing (IEF) Gel Electrophoresis |
|
|
162 | (3) |
|
4.7.5.1 Principles of Isoelectric Focusing |
|
|
163 | (1) |
|
4.7.5.2 The Process of Isoelectric Focusing and the Estimation of pI |
|
|
164 | (1) |
|
4.7.5.3 Establishing a pH Gradient |
|
|
164 | (1) |
|
4.7.6 Two-dimensional Gel Electrophoresis |
|
|
165 | (1) |
|
4.7.6.1 Sample Preparation |
|
|
166 | (1) |
|
4.7.6.2 Protocol for SDS-PAGE |
|
|
166 | (1) |
|
4.7.7 Capillary Electrophoresis |
|
|
166 | (3) |
5 Molecular Biology |
|
169 | (72) |
|
|
169 | (1) |
|
5.2 Structure of Nucleic Acids |
|
|
170 | (11) |
|
5.2.1 The Nature and Components of Nucleic Acids |
|
|
170 | (3) |
|
5.2.2 Primary Structure of Nucleic Acids |
|
|
173 | (1) |
|
5.2.3 Secondary and Tertiary Structures of Nucleic Acids |
|
|
174 | (5) |
|
5.2.3.1 A Model for DNA Structure: The Double Helix |
|
|
174 | (4) |
|
5.2.3.2 Structures of Single-Stranded Nucleic Acids (RNA) |
|
|
178 | (1) |
|
5.2.3.3 Super Coiled Tertiary Structures of Closed DNA |
|
|
178 | (1) |
|
5.2.4 Stability of Secondary and Tertiary Structures of Nucleic Acids |
|
|
179 | (1) |
|
5.2.5 Physical Organization of DNA within the Nucleus |
|
|
180 | (1) |
|
5.3 Functions of Nucleic Acids |
|
|
181 | (6) |
|
5.3.1 Replication: DNA to DNA |
|
|
182 | (1) |
|
5.3.2 Transcription: DNA to RNA |
|
|
183 | (2) |
|
5.3.3 Translation: RNA to Protein |
|
|
185 | (2) |
|
|
187 | (3) |
|
|
187 | (1) |
|
|
188 | (2) |
|
5.5 Isolation and Separation of Nucleic Acids |
|
|
190 | (5) |
|
5.5.1 Conventional Chemical Nucleic Acid Extraction Methods |
|
|
191 | (1) |
|
5.5.2 Solid Phase Nucleic Acid Extraction using Silica-based Technology |
|
|
192 | (1) |
|
5.5.3 Magnetic Beads-based Nucleic Acid Isolation |
|
|
192 | (1) |
|
5.5.4 Anion Exchange Technology |
|
|
193 | (1) |
|
5.5.5 Automated Extraction Systems |
|
|
193 | (1) |
|
5.5.6 Electrophoresis for Separation of Nucleic Acids |
|
|
193 | (2) |
|
5.6 Manipulation and Detection of Nucleic Acids |
|
|
195 | (12) |
|
5.6.1 Enzymes Used to Manipulate Nucleic Acids in Molecular Biology |
|
|
195 | (3) |
|
|
195 | (2) |
|
|
197 | (1) |
|
|
197 | (1) |
|
5.6.1.4 DNA Modifying Enzymes |
|
|
197 | (1) |
|
5.6.2 Nucleic Acid Mutagenesis |
|
|
198 | (4) |
|
5.6.2.1 Oligonucleotide-directed Mutagenesis |
|
|
199 | (1) |
|
5.6.2.2 PCR-based Site-directed Mutagenesis |
|
|
199 | (2) |
|
5.6.2.3 CRISPR/Cas-9 Technology |
|
|
201 | (1) |
|
5.6.3 Nucleic Acid Hybridization |
|
|
202 | (5) |
|
|
204 | (1) |
|
5.6.3.2 Colony Hybridization |
|
|
205 | (1) |
|
5.6.3.3 Fluorescence in situ Hybridization |
|
|
206 | (1) |
|
5.7 Polymerase Chain Reaction |
|
|
207 | (9) |
|
|
207 | (1) |
|
|
208 | (2) |
|
|
210 | (6) |
|
|
210 | (1) |
|
5.7.3.2 Quantitative PCR (qPCR) |
|
|
210 | (4) |
|
5.7.3.3 Reverse Transcription PCR (RT-PCR) |
|
|
214 | (1) |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
216 | (1) |
|
|
216 | (1) |
|
5.8 Nucleic Acid Sequencing |
|
|
216 | (10) |
|
5.8.1 First Generation Sequencing |
|
|
217 | (1) |
|
5.8.1.1 Chain Termination/Sanger Sequencing Method |
|
|
217 | (1) |
|
5.8.1.2 Maxim and Gilbert Sequencing |
|
|
217 | (1) |
|
5.8.1.3 Automated Fluorescent DNA Sequencing |
|
|
218 | (1) |
|
5.8.2 Next Generation (Second Generation) Sequencing |
|
|
218 | (5) |
|
|
219 | (1) |
|
|
220 | (1) |
|
5.8.2.3 Ion Torrent Sequencing |
|
|
221 | (1) |
|
|
222 | (1) |
|
5.8.3 Third Generation Sequencing |
|
|
223 | (3) |
|
|
224 | (1) |
|
|
224 | (2) |
|
5.9 Analyzing Gene and Gene Expression |
|
|
226 | (10) |
|
5.9.1 Methods for the Study of Gene Expression |
|
|
227 | (9) |
|
5.9.1.1 Low-Throughput Methods |
|
|
227 | (6) |
|
5.9.1.2 High-Throughput Methods |
|
|
233 | (3) |
|
|
236 | (5) |
|
5.10.1 Agarose Gel Electrophoresis |
|
|
236 | (1) |
|
5.10.2 Extraction of RNA Using the PureLink RNA Mini Kit |
|
|
237 | (1) |
|
5.10.3 Polymerase Chain Reaction (PCR) |
|
|
238 | (3) |
6 Cell Culture |
|
241 | (41) |
|
|
241 | (1) |
|
6.2 Cell Structure and Function |
|
|
242 | (4) |
|
|
246 | (5) |
|
|
248 | (3) |
|
6.4 Cell Microenvironment |
|
|
251 | (1) |
|
6.5 Primary Explantation versus Disaggregation |
|
|
252 | (3) |
|
6.6 Proliferation versus Differentiation |
|
|
255 | (2) |
|
|
255 | (1) |
|
|
256 | (1) |
|
|
257 | (1) |
|
6.8 Basics of Cell Culturing and Associated Measurements |
|
|
258 | (7) |
|
6.8.1 Types of Cell Culture |
|
|
260 | (5) |
|
6.8.1.1 Primary Cell Cultures |
|
|
260 | (1) |
|
6.8.1.2 Secondary Cell Culture |
|
|
261 | (1) |
|
|
261 | (1) |
|
6.8.1.4 Stem Cell Cultures |
|
|
261 | (1) |
|
|
262 | (2) |
|
|
264 | (1) |
|
6.8.1.7 Serial Subculture |
|
|
265 | (1) |
|
6.9 Propagation, Population Doubling and Passage Number |
|
|
265 | (1) |
|
|
265 | (1) |
|
6.10.1 Common Assays for Cell Viability |
|
|
265 | (1) |
|
|
266 | (1) |
|
6.12 Characterization and Validation |
|
|
267 | (1) |
|
|
267 | (1) |
|
6.12.2 Cross Contamination |
|
|
267 | (1) |
|
6.12.3 Microbial Contamination |
|
|
268 | (1) |
|
|
268 | (14) |
|
6.13.1 The Light Microscope |
|
|
269 | (1) |
|
6.13.2 Fluorescence Microscopy |
|
|
270 | (1) |
|
6.13.3 Confocal Microscopy |
|
|
271 | (1) |
|
6.13.4 Electron Microscope |
|
|
272 | (2) |
|
6.13.5 Atomic Force Microscopy |
|
|
274 | (8) |
7 Antibody Technology |
|
282 | (36) |
|
7.1 Introduction to Immunochemical Techniques |
|
|
282 | (1) |
|
|
283 | (3) |
|
|
286 | (1) |
|
|
287 | (1) |
|
7.4.1 Heterogenous Immunoassays Can Be Competitive or Noncompetitive |
|
|
288 | (1) |
|
|
288 | (6) |
|
|
289 | (1) |
|
|
290 | (1) |
|
|
291 | (1) |
|
7.5.4 Competitive/Inhibition ELISA |
|
|
292 | (2) |
|
|
294 | (2) |
|
|
296 | (1) |
|
7.8 Immunoprecipitation Reaction |
|
|
297 | (5) |
|
|
297 | (1) |
|
7.8.2 Types of Immunoprecipitation (IP) |
|
|
298 | (4) |
|
|
302 | (2) |
|
7.9.1 Radial Immunodiffusion (RID) |
|
|
302 | (1) |
|
7.9.2 Ouchterlony Double Immunodiffusion (ODI) |
|
|
303 | (1) |
|
7.10 Radioimmunoassay (RIA) |
|
|
304 | (2) |
|
7.11 Immunoelectrophoresis |
|
|
306 | (2) |
|
|
308 | (1) |
|
7.12.1 Surface Plasmon Resonance (SPR) |
|
|
309 | (1) |
|
|
309 | (9) |
|
7.13.1 General Principles of mAb Activity |
|
|
312 | (1) |
|
7.13.2 Targets of Therapeutic Antibodies |
|
|
313 | (1) |
|
|
314 | (4) |
Appendices |
|
318 | (19) |
|
Appendix 1 Troubleshooting: Cell Culture |
|
|
318 | (4) |
|
Appendix 2 Laboratory Safety |
|
|
322 | (2) |
|
|
324 | (6) |
|
Appendix 4 Significant Figures |
|
|
330 | (2) |
|
Appendix 5 Units in the Biochemistry Laboratory |
|
|
332 | (2) |
|
Appendix 6 Chapter Contributors |
|
|
334 | (1) |
|
Appendix 7 Online Resources |
|
|
334 | (3) |
Index |
|
337 | (4) |
Color Plates |
|
341 | |