Muutke küpsiste eelistusi

Preparative Chromatography 3rd edition [Kõva köide]

Edited by (MPI f. Dynamik komplexer technischer Systeme, Magdedburg), Edited by (Merck KGaA Performance Materials, Darmstadt, Germany), Edited by (Universität Dortmund, Lehrstuhl für Anlagentechnik, FB Chemietechik, Dortmund, Germany)
  • Formaat: Hardback, 648 pages, kõrgus x laius x paksus: 246x174x34 mm, kaal: 1429 g
  • Ilmumisaeg: 09-Apr-2020
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527344861
  • ISBN-13: 9783527344864
Teised raamatud teemal:
  • Formaat: Hardback, 648 pages, kõrgus x laius x paksus: 246x174x34 mm, kaal: 1429 g
  • Ilmumisaeg: 09-Apr-2020
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527344861
  • ISBN-13: 9783527344864
Teised raamatud teemal:

The third edition of this popular work is revised to include the latest developments in this fast-changing field. Its interdisciplinary approach elegantly combines the chemistry and engineering to explore the fundamentals and optimization processes involved.

Arvustused

"I would not hesitate to recommend it to anyone working in this field." Chromatographia

"Overall the coverage is a bit uneven - nevertheless the volume does compile some useful material... In conclusion, this is a comprehensive reference text, which should find its way into the libraries of all companies who are serious about process scale preparative chromatography, whether internally or via outsource contracts." Organic Process Research and Development

"This special volume is essential for chemists and engineers working in chemical and pharmaceutical industries, as well as for food technologies, due to the interdisciplinary nature of these preparative chromatographic processes." Advances in Food Sciences

Preface xv
About the Editors xvii
List of Abbreviations
xix
Notation xxiii
1 Introduction
1(8)
Henner Schmidt-Traub
Reinhard Ditz
1.1 Chromatography, Development, and Future Trends
1(3)
1.2 Focus of the Book
4(1)
1.3 Suggestions on How to Read this Book
4(5)
References
6(3)
2 Fundamentals and General Terminology
9(40)
Andreas Seidel-Morgenstern
2.1 Principles and Features of Chromatography
9(4)
2.2 Analysis and Description of Chromatograms
13(12)
2.2.1 Voidage and Porosity
13(3)
2.2.2 Retention Times and Capacity Factors
16(1)
2.2.3 Efficiency of Chromatographic Separations
17(3)
2.2.4 Resolution
20(3)
2.2.5 Pressure Drop
23(2)
2.3 Mass Transfer and Fluid Dynamics
25(4)
2.3.1 Principles of Mass Transfer
25(2)
2.3.2 Fluid Distribution in the Column
27(1)
2.3.3 Packing Nonidealities
28(1)
2.3.4 Extra-Column Effects
29(1)
2.4 Equilibrium Thermodynamics
29(15)
2.4.1 Definition of Isotherms
29(2)
2.4.2 Models of Isotherms
31(1)
2.4.2.1 Single-Component Isotherms
31(2)
2.4.2.2 Multicomponent Isotherms Based on the Langmuir Model
33(1)
2.4.2.3 Competitive Isotherms Based on the Ideal Adsorbed Solution Theory
34(3)
2.4.2.4 Steric Mass Action Isotherms
37(1)
2.4.3 Relation Between Isotherms and Band Shapes
38(6)
2.5 Column Overloading and Operating Modes
44(5)
2.5.1 Overloading Strategies
44(1)
2.5.2 Beyond Isocratic Batch Elution
45(1)
References
46(3)
3 Stationary Phases
49(110)
Michael Schulte
3.1 Survey of Packings and Stationary Phases
49(1)
3.2 Inorganic Sorbents
50(23)
3.2.1 Activated Carbons
50(4)
3.2.2 Synthetic Zeolites
54(1)
3.2.3 Porous Oxides: Silica, Activated Alumina, Titania, Zirconia, and Magnesia
54(1)
3.2.4 Silica
55(2)
3.2.4.1 Surface Chemistry
57(2)
3.2.4.2 Mass Loadability
59(1)
3.2.5 Diatomaceous Earth
59(1)
3.2.6 Reversed Phase Silicas
60(1)
3.2.6.1 Silanization of the Silica Surface
60(1)
3.2.6.2 Silanization
60(1)
3.2.6.3 Starting Silanes
61(1)
3.2.6.4 Parent Porous Silica
61(1)
3.2.6.5 Reaction and Reaction Conditions
62(1)
3.2.6.6 Endcapping
62(1)
3.2.6.7 Chromatographic Characterization of Reversed Phase Silicas
63(1)
3.2.6.8 Chromatographic Performance
63(2)
3.2.6.9 Hydrophobic Properties Retention Factor (Amount of Organic Solvent for Elution), Selectivity
65(1)
3.2.6.10 Shape Selectivity
65(2)
3.2.6.11 Silanol Activity
67(1)
3.2.6.12 Purity
68(1)
3.2.6.13 Improved pH Stability Silica
68(1)
3.2.7 Aluminum Oxide
69(1)
3.2.8 Titanium Dioxide
70(1)
3.2.9 Other Oxides
71(1)
3.2.9.1 Magnesium Oxide
71(1)
3.2.9.2 Zirconium Dioxide
71(1)
3.2.10 Porous Glasses
72(1)
3.3 Cross-Linked Organic Polymers
73(38)
3.3.1 General Aspects
74(3)
3.3.2 Hydrophobic Polymer Stationary Phases
77(1)
3.3.3 Hydrophilic Polymer Stationary Phases
78(1)
3.3.4 Ion Exchange (IEX)
79(2)
3.3.4.1 Optimization of Ion-Exchange Resins
81(7)
3.3.5 Mixed Mode
88(1)
3.3.6 Hydroxyapatite
88(3)
3.3.7 Designed Adsorbents
91(1)
3.3.7.1 Protein A Affinity Sorbents
91(5)
3.3.7.2 Other IgG Receptor Proteins: Protein G and Protein L
96(1)
3.3.7.3 Sorbents for Derivatized/Tagged Compounds: Immobilized Metal Affinity Chromatography (IMAC)
96(5)
3.3.7.4 Other Tag-Based Affinity Sorbents
101(1)
3.3.8 Customized Adsorbents
102(3)
3.3.8.1 Low Molecular Weight Ligands
105(3)
3.3.8.2 Natural Polymers (Proteins, Polynucleotides)
108(3)
3.3.8.3 Artificial Polymers
111(1)
3.4 Advective Chromatographic Materials
111(10)
3.4.1 Adsorptive Membranes and Grafted-Polymer Membranes
114(1)
3.4.2 Adsorptive Nonwovens
115(2)
3.4.3 Fiber/Particle Composites
117(1)
3.4.4 Area-Enhanced Fibers
117(1)
3.4.5 Monolith
118(3)
3.4.6 Chromatographic Materials for Larger Molecules
121(1)
3.5 Chiral Stationary Phases
121(11)
3.5.1 Cellulose- and Amylose-Based CSP
122(6)
3.5.2 Antibiotic CSP
128(1)
3.5.3 Cyclofructan-Based CSP
128(1)
3.5.4 Synthetic Polymers
128(2)
3.5.5 Targeted Selector Design
130(2)
3.5.6 Further Developments
132(1)
3.6 Properties of Packings and Their Relevance to Chromatographic Performance
132(6)
3.6.1 Chemical and Physical Bulk Properties
132(1)
3.6.2 Morphology
133(1)
3.6.3 Particulate Adsorbents: Particle Size and Size Distribution
133(1)
3.6.4 Pore Texture
134(3)
3.6.5 Pore Structural Parameters
137(1)
3.6.6 Comparative Rating of Columns
137(1)
3.7 Sorbent Maintenance and Regeneration
138(21)
3.7.1 Cleaning in Place (CIP)
138(2)
3.7.2 CIP for IEX
140(1)
3.7.3 CIP of Protein A Sorbents
140(3)
3.7.4 Conditioning of Silica Surfaces
143(2)
3.7.5 Sanitization in Place (SIP)
145(1)
3.7.6 Column and Adsorbent Storage
145(1)
References
146(13)
4 Selection of Chromatographic Systems
159(5)
Michael Schulte
4.1 Definition of the Task
164(3)
4.2 Mobile Phases for Liquid Chromatography
167(1)
4.2.1 Stability
168(4)
4.2.2 Safety Concerns
172(1)
4.2.3 Operating Conditions
172(4)
4.2.4 Aqueous Buffer Systems
176(2)
4.3 Adsorbent and Phase Systems
178(6)
4.3.1 Choice of Phase System Dependent on Solubility
178(2)
4.3.2 Improving Loadability for Poor Solubilities
180(3)
4.3.3 Dependency of Solubility on Sample Purity
183(1)
4.3.4 Generic Gradients for Fast Separations
184(1)
4.4 Criteria for Choosing Normal Phase Systems
184(22)
4.4.1 Retention in NP Systems
186(2)
4.4.2 Solvent Strength in Liquid-Solid Chromatography
188(2)
4.4.3 Pilot Technique Thin-Layer Chromatography Using the PRISMA Model
190(9)
4.4.3.1 Step (1): Solvent Strength Adjustment
199(1)
4.4.3.2 Step (2): Optimization of Selectivity
199(1)
4.4.3.3 Step (3): Final Optimization of the Solvent Strength
200(1)
4.4.3.4 Step (4): Determination of the Optimum Mobile Phase Composition
200(2)
4.4.4 Strategy for an Industrial Preparative Chromatography Laboratory
202(1)
4.4.4.1 Standard Gradient Elution Method on Silica
203(1)
4.4.4.2 Simplified Procedure
204(2)
4.5 Criteria for Choosing Reversed Phase Systems
206(17)
4.5.1 Retention and Selectivity in RP Systems
208(4)
4.5.2 Gradient Elution for Small Amounts of Product on RP Columns
212(1)
4.5.3 Rigorous Optimization for Isocratic Runs
213(4)
4.5.4 Rigorous Optimization for Gradient Runs
217(5)
4.5.5 Practical Recommendations
222(1)
4.6 Criteria for Choosing CSP Systems
223(8)
4.6.1 Suitability of Preparative CSP
223(1)
4.6.2 Development of Enantioselectivity
224(2)
4.6.3 Optimization of Separation Conditions
226(1)
4.6.3.1 Determination of Racemate Solubility
226(1)
4.6.3.2 Selection of Elution Order
226(1)
4.6.3.3 Optimization of Mobile/Stationary Phase Composition, Including Temperature
226(1)
4.6.3.4 Determination of Optimum Separation Step
227(1)
4.6.4 Practical Recommendations
227(4)
4.7 Downstream Processing of mAbs Using Protein A and IEX
231(5)
4.8 Size-Exclusion Chromatography (SEC)
236(1)
4.9 Overall Chromatographic System Optimization
237(14)
4.9.1 Conflicts During Optimization of Chromatographic Systems
237(4)
4.9.2 Stationary Phase Gradients
241(5)
References
246(5)
5 Process Concepts
251(126)
Malte Kaspereit
Henner Schmidt-Traub
5.1 Discontinuous Processes
252(9)
5.1.1 Isocratic Operation
252(1)
5.1.2 Gradient Chromatography
253(3)
5.1.3 Closed-Loop Recycling Chromatography
256(2)
5.1.4 Steady-State Recycling Chromatography (SSRC)
258(1)
5.1.5 Flip-Flop Chromatography
259(1)
5.1.6 Chromatographic Batch Reactors
260(1)
5.2 Continuous Processes
261(31)
5.2.1 Column Switching Chromatography
262(1)
5.2.2 Annular Chromatography
262(1)
5.2.3 Multiport Switching Valve Chromatography (ISEP/CSEP)
263(1)
5.2.4 Isocratic Simulated Moving Bed (SMB) Chromatography
264(4)
5.2.5 SMB Chromatography with Variable Process Conditions
268(1)
5.2.5.1 Varicol
269(1)
5.2.5.2 PowerFeed
270(1)
5.2.5.3 Partial-Feed, Partial-Discard, and Fractionation-Feedback Concepts
271(1)
5.2.5.4 Improved/Intermittent SMB (iSMB)
271(2)
5.2.5.5 Modicon
273(1)
5.2.5.6 FF-SMB
273(1)
5.2.6 Gradient SMB Chromatography
274(1)
5.2.7 Supercritical Fluid Chromatography (SFC)
275(1)
5.2.7.1 Supercritical Batch Chromatography
276(1)
5.2.7.2 Supercritical SMB processes
277(1)
5.2.8 Multicomponent Separations
277(1)
5.2.9 Multicolumn Systems for Bioseparations
278(1)
5.2.9.1 Multicolumn Capture Chromatography (MCC)
279(7)
5.2.9.2 Multicolumn Countercurrent Solvent Gradient Purification (MCSGP)
286(2)
5.2.10 Countercurrent Chromatographic Reactors
288(1)
5.2.10.1 SMB Reactor
288(2)
5.2.10.2 SMB Reactors with Distributed Functionalities
290(2)
5.3 Choice of Process Concepts
292(85)
5.3.1 Scale
292(1)
5.3.2 Range of k'
292(1)
5.3.3 Number of Fractions
293(1)
5.3.4 Example 1: Lab Scale; Two Fractions
293(1)
5.3.5 Example 2: Lab Scale; Three or More Fractions
294(2)
5.3.6 Example 3: Production Scale; Wide Range of k'
296(1)
5.3.7 Example 4: Production Scale; Two Main Fractions
297(1)
5.3.8 Example 5: Production Scale; Three Fractions
298(2)
5.3.9 Example 6: Production Scale; Multistage Process
300(2)
References
302(9)
6 Modeling of Chromatographic Processes
311(1)
Andreas Seidel-Morgenstern
6.1 Introduction
311(1)
6.2 Models for Single Chromatographic Columns
311(1)
6.2.1 Equilibrium Stage Models
312(1)
6.2.1.1 Discontinuous Model According to Craig
313(2)
6.2.1.2 Continuous Model According to Martin and Synge
315(1)
6.2.2 Derivation of Continuous Mass Balance Equations
316(2)
6.2.2.1 Mass Balance Equations
318(2)
6.2.2.2 Convective Transport
320(1)
6.2.2.3 Axial Dispersion
320(1)
6.2.2.4 Intraparticle Diffusion
321(1)
6.2.2.5 Mass Transfer Between Phases
321(1)
6.2.2.6 Finite Rates of Adsorption and Desorption
322(1)
6.2.2.7 Adsorption Equilibria
323(1)
6.2.3 Equilibrium Model of Chromatography
323(6)
6.2.4 Models with One Band Broadening Effect
329(1)
6.2.4.1 Equilibrium Dispersion Model
329(2)
6.2.4.2 Finite Adsorption Rate Model
331(1)
6.2.5 Continuous Lumped Rate Models
331(1)
6.2.5.1 Transport Dispersion Models
332(1)
6.2.5.2 Lumped Finite Adsorption Rate Model
333(1)
6.2.6 General Rate Models
333(2)
6.2.7 Initial and Boundary Conditions of the Column
335(1)
6.2.8 Dimensionless Model Equations
336(2)
6.2.9 Comparison of Different Model Approaches
338(5)
6.3 Including Effects Outside the Columns
343(3)
6.3.1 Experimental Setup and Simulation Flow Sheet
343(2)
6.3.2 Modeling Extra-Column Equipment
345(1)
6.3.2.1 Injection System
345(1)
6.3.2.2 Piping
345(1)
6.3.2.3 Detector
345(1)
6.4 Calculation Methods and Software
346(9)
6.4.1 Analytical Solutions
346(1)
6.4.2 Numerical Solution Methods
346(1)
6.4.2.1 Discretization
346(3)
6.4.2.2 General Solution Procedure and Software
349(1)
References
350(5)
7 Determination of Model Parameters
355(54)
Andreas Seidel-Morgenstern
Andreas Jupke
Henner Schmidt-Traub
7.1 Parameter Classes for Chromatographic Separations
355(2)
7.1.1 Design Parameters
355(1)
7.1.2 Operating Parameters
356(1)
7.1.3 Model Parameters
356(1)
7.2 Concept to Determine Model Parameters
357(2)
7.3 Detectors and Parameter Estimation
359(4)
7.3.1 Calibration of Detectors
359(1)
7.3.2 Parameter Estimation
360(2)
7.3.3 Evaluation of Chromatograms
362(1)
7.4 Determination of Packing Parameters
363(2)
7.4.1 Void Fraction and Porosity of the Packing
363(1)
7.4.2 Axial Dispersion
363(1)
7.4.3 Pressure Drop
364(1)
7.5 Adsorption Isotherms
365(21)
7.5.1 Determination of Adsorption Isotherms
365(1)
7.5.2 Estimation of Henry Coefficients
365(5)
7.5.3 Static Isotherm Determination Methods
370(1)
7.5.3.1 Batch Method
370(1)
7.5.3.2 Adsorption-Desorption Method
370(1)
7.5.3.3 Circulation Method
371(1)
7.5.4 Dynamic Methods
371(1)
7.5.5 Frontal Analysis
371(7)
7.5.6 Analysis of Dispersed Fronts
378(2)
7.5.7 Peak Maximum Method
380(1)
7.5.8 Minor Disturbance/Perturbation Method
380(3)
7.5.9 Curve Fitting of the Chromatogram
383(1)
7.5.10 Data Analysis and Accuracy
384(2)
7.6 Mass Transfer Kinetics
386(3)
7.6.1 Correlations
386(2)
7.6.2 Application of Method of Moments
388(1)
7.7 Plant Parameters
389(2)
7.8 Experimental Validation of Column Models and Model Parameters
391(18)
7.8.1 Batch Chromatography
391(3)
7.8.2 Simulated Moving Bed Chromatography
394(1)
7.8.2.1 Model Formulation and Parameters
394(6)
7.8.2.2 Experimental Validation
400(4)
References
404(5)
8 Process Design and Optimization
409(94)
Andreas Jupke
Andreas Biselli
Make Kaspereit
Martin Leipnitz
Henner Schmidt-Traub
8.1 Basic Principles and Definitions
409(17)
8.1.1 Performance, Costs, and Objective Functions
409(1)
8.1.1.1 Performance Criteria
410(1)
8.1.1.2 Economic Criteria
411(1)
8.1.1.3 Objective Functions
412(1)
8.1.2 Degrees of Freedom
413(1)
8.1.2.1 Categories of Parameters
413(1)
8.1.2.2 Dimensionless Operating and Design Parameters
414(4)
8.1.3 Scaling by Dimensionless Parameters
418(1)
8.1.3.1 Influence of Different HETP Coefficients for Every Component
419(1)
8.1.3.2 Influence of Feed Concentration
420(1)
8.1.3.3 Examples for a Single-Column Batch Chromatography
421(3)
8.1.3.4 Examples for SMB Processes
424(2)
8.2 Batch Chromatography
426(11)
8.2.1 Fractionation Mode (Cut Strategy)
426(1)
8.2.2 Design and Optimization of Batch Chromatographic Columns
427(1)
8.2.2.1 Process Performance Depending on Number of Stages and Loading Factor
427(5)
8.2.2.2 Design and Optimization Strategy
432(4)
8.2.2.3 Other Strategies
436(1)
8.3 Recycling Chromatography
437(8)
8.3.1 Design of Steady-State Recycling Chromatography
437(3)
8.3.2 Scale-Up of Closed-Loop Recycling Chromatography
440(5)
8.4 Conventional Isocratic SMB Chromatography
445(20)
8.4.1 Considerations to Optimal Concentration Profiles in SMB Process
445(1)
8.4.2 Process Design Based on TMB Models (Shortcut Methods)
446(1)
8.4.2.1 Triangle Theory for an Ideal Model with Linear Isotherms
447(2)
8.4.2.2 Triangle Theory for an Ideal Model with Nonlinear Isotherms
449(3)
8.4.2.3 Shortcut to Apply the Triangle Theory on a System with Unknown Isotherms Assuming Langmuir Character
452(3)
8.4.3 Process Design and Optimization Based on Rigorous SMB Models
455(1)
8.4.3.1 Estimation of Operating Parameter
456(1)
8.4.3.2 Optimization of Operating Parameters for Linear Isotherms Based on Process Understanding
457(1)
8.4.3.3 Optimization of Operating Parameters for Nonlinear Isotherms Based on Process Understanding
458(2)
8.4.3.4 Optimization of Design Parameters
460(5)
8.5 Isocratic SMB Chromatography Under Variable Operating Conditions
465(11)
8.5.1 Performance Comparison of Varicol and Conventional SMB
466(4)
8.5.2 Performance Comparison of Varicol, PowerFeed, and Modicon with Conventional SMB
470(5)
8.5.3 Performance Trends Applying SMB Concepts Under Variable Operating Conditions
475(1)
8.6 Gradient SMB Chromatography
476(11)
8.6.1 Step Gradient
476(6)
8.6.2 Multicolumn Solvent Gradient Purification Process
482(5)
8.7 Multicolumn Systems for Bioseparations
487(16)
8.7.1 Design of Twin-Column CaptureSMB
488(2)
8.7.2 Modeling of Multicolumn Capture processes
490(3)
References
493(10)
9 Process Control
503(22)
Sebastian Engell
Achim Kienle
9.1 Standard Process Control
504(1)
9.2 Advanced Process Control
504(13)
9.2.1 Online Optimization of Batch Chromatography
505(2)
9.2.2 Advanced Control of SMB Chromatography
507(1)
9.2.2.1 Purity Control for SMB Processes
508(2)
9.2.2.2 Direct Optimizing Control of SMB Processes
510(5)
9.2.3 Advanced Parameter and State Estimation for SMB Processes
515(2)
9.2 A Adaptive Cycle-to-Cycle Control
517(8)
9.2.5 Control of Coupled Simulated Moving Bed Processes for the Production of Pure Enantiomers
519(2)
References
521(4)
10 Chromatography Equipment: Engineering and Operation
525(82)
Henner Schmidt-Traub
Arthur Susanto
10.1 Challenges for Conceptual Process Design
525(8)
10.1.1 Main Cost Factors for a Chromatographic System
527(1)
10.1.2 Conceptual Process Design
528(1)
10.1.2.1 A Case Study: Large-Scale Biotechnology Project
529(4)
10.2 Engineering Challenges
533(7)
10.2.1 Challenges Regarding Sanitary Design
535(4)
10.2.2 Challenges During Acceptance Tests and Qualifications
539(1)
10.3 Commercial Chromatography Columns
540(11)
10.3.1 General Design
541(1)
10.3.1.1 Manually Moved Piston
542(1)
10.3.1.2 Electrically or Hydraulically Moved Piston
542(1)
10.3.2 High- and Low-Pressure Columns
543(1)
10.3.2.1 Chemical Compatibility
544(2)
10.3.2.2 Frit Design
546(3)
10.3.2.3 Special Aspects of Bioseparation
549(2)
10.4 Commercial Chromatographic Systems
551(20)
10.4.1 General Design Aspects: High-Pressure and Low-Pressure Systems
551(2)
10.4.2 Material
553(1)
10.4.3 Batch Low-Pressure Liquid Chromatographic (LPLC) Systems
553(1)
10.4.3.1 Inlets
553(2)
10.4.3.2 Valves to Control Flow Direction
555(1)
10.4.3.3 Pumps
556(1)
10.4.3.4 Pump- and Valve-Based and Gradient Formation
556(2)
10.4.4 Batch High-Pressure Liquid Chromatography
558(1)
10.4.4.1 General Layout
558(1)
10.4.4.2 Inlets and Outlets
559(1)
10.4.4.3 Pumps
559(3)
10.4.4.4 Valves and Pipes
562(1)
10.4.5 Continuous Systems: Simulated Moving Bed
563(1)
10.4.5.1 General Layout
563(2)
10.4.5.2 A Key Choice: The Recycling Strategy
565(1)
10.4.5.3 Pumps, Inlets, and Outlets
566(1)
10.4.5.4 Valves and Piping
566(1)
10.4.6 Auxiliary Systems
567(1)
10.4.6.1 Slurry Preparation Tank
567(1)
10.4.6.2 Slurry Pumps and Packing Stations
568(1)
10.4.6.3 Cranes and Transport Units
568(1)
10.4.6.4 Filter Integrity Test
568(1)
10.4.7 Detectors
569(2)
10.5 Packing Methods
571(14)
10.5.1 Column and Packing Methodology Selection
571(1)
10.5.2 Slurry Preparation
572(2)
10.5.3 Column Preparation
574(1)
10.5.4 Flow Packing
575(2)
10.5.5 Dynamic Axial Compression (DAC) Packing
577(1)
10.5.6 Stall Packing
577(1)
10.5.7 Combined Method (Stall + DAC)
578(2)
10.5.8 Vacuum Packing
580(1)
10.5.9 Vibration Packing
581(1)
10.5.10 Column Equilibration
582(1)
10.5.11 Column Testing and Storage
583(1)
10.5.11.1 Test Systems
583(1)
10.5.11.2 Hydrodynamic Properties and Column Efficiency
584(1)
10.5.11.3 Column and Adsorbent Storage
585(1)
10.6 Process Troubleshooting
585(8)
10.6.1 Technical Failures
586(1)
10.6.2 Loss of Performance
587(1)
10.6.2.1 Pressure Increase
587(3)
10.6.2.2 Loss of Column Efficiency
590(1)
10.6.2.3 Variation of Elution Profile
591(1)
10.6.2.4 Loss of Purity/Yield
592(1)
10.6.3 Column Stability
592(1)
10.7 Disposable Technology for Bioseparations
593(14)
10.7.1 Prepacked Columns
596(1)
10.7.2 Membrane Chromatography
597(2)
References
599(2)
Appendix A Data of Test Systems
601(1)
A.1 EMD53986
601(1)
A.2 Troger's Base
602(2)
A.3 Glucose and Fructose
604(2)
A.4 β-Phenethyl Acetate
606(1)
References
607(2)
Index 609
Professor Schmidt-Traub was Professor for Plant and Process Design at the Department of Biochemical and Chemical Engineering, University of Dortmund, Germany until his retirement in 2006. He is still active in the research community and his main areas of research focus on preparative chromatography, down stream processing, integrated processes, plant design and innovative energy transfer. Prior to his academic appointment, Prof. Schmidt-Traub gained 15 years of industrial experience in plant engineering.

Prof. Seidel-Morgenstern is the Director of the Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany and holds the Chair in Chemical Process Engineering at the Otto-von-Guericke-Universität, Magdeburg, Germany. He received his Ph.D. in 1987 at the Institute of Physical Chemistry of the Academy of Sciences in Berlin. From there he went on to work as postdoctoral fellow at the University of Tennessee, Knoxville, USA. In 1994 he finished his habilitation at the Technical University in Berlin. His research is focused on new reactor concepts, chromatographic reactors, membrane reactors, adsorption and preparative chromatography and separation of enantiomers amongst others.

Dr. Michael Schulte is Senior Director Emerging Businesses Energy at Merck KGaA Performance Materials, Darmstadt, Germany. In his Ph.D. thesis at the University of Münster, Germany, he developed new chiral stationary phases for chromatographic enantioseparations. In 1995 he joined Merck and has since then been responsible for research and development in the area of preparative chromatography, including the development of new stationary phases, new separation processes and the implementation of Simulated Moving Bed-technology at Merck. In his current position one of his areas of research is the use of Ionic Liquids for separation processes.