Muutke küpsiste eelistusi

Preserving Privacy Against Side-Channel Leaks: From Data Publishing to Web Applications Softcover reprint of the original 1st ed. 2016 [Pehme köide]

  • Formaat: Paperback / softback, 142 pages, kõrgus x laius: 235x155 mm, kaal: 2467 g, 1 Illustrations, color; 18 Illustrations, black and white; XIII, 142 p. 19 illus., 1 illus. in color., 1 Paperback / softback
  • Sari: Advances in Information Security 68
  • Ilmumisaeg: 22-Apr-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319826263
  • ISBN-13: 9783319826264
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 142 pages, kõrgus x laius: 235x155 mm, kaal: 2467 g, 1 Illustrations, color; 18 Illustrations, black and white; XIII, 142 p. 19 illus., 1 illus. in color., 1 Paperback / softback
  • Sari: Advances in Information Security 68
  • Ilmumisaeg: 22-Apr-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319826263
  • ISBN-13: 9783319826264
This book offers a novel approach to data privacy by unifying side-channel attacks within a general conceptual framework. This book then applies the framework in three concrete domains. 
First, the book examines privacy-preserving data publishing with publicly-known algorithms, studying a generic strategy independent of data utility measures and syntactic privacy properties before discussing an extended approach to improve the efficiency. Next, the book explores privacy-preserving traffic padding in Web applications, first via a model to quantify privacy and cost and then by introducing randomness to provide background knowledge-resistant privacy guarantee. Finally, the book considers privacy-preserving smart metering by proposing a light-weight approach to simultaneously preserving users' privacy and ensuring billing accuracy. 
Designed for researchers and professionals, this book is also suitable for advanced-level students interested in privacy, algorithms, or web applications.

Introduction.- Related Work.- Data Publishing: Trading off Privacy with Utility through the k-Jump Strategy.- Data Publishing: A Two-Stage Approach to Improving Algorithm Efficiency.- Web Applications: k-Indistinguishable Traffic Padding.- Web Applications: Background-Knowledge Resistant Random Padding.- Smart Metering: Inferences of Appliance Status from Fine-Grained Readings.- The Big Picture: A Generic Model of Side-Channel Leaks.- Conclusion.