Muutke küpsiste eelistusi

Pressure Transient Formation and Well Testing: Convolution, Deconvolution and Nonlinear Estimation, Volume 57 [Kõva köide]

(Schlumberger SRPC, F-92142 Clamart, France), (Technical University of Istanbul, 34469 Maslak, Turkey), (Schlumberger Middle East SA, Abu Dhabi, UAE)
  • Formaat: Hardback, 416 pages, kõrgus x laius: 229x152 mm
  • Sari: Developments in Petroleum Science
  • Ilmumisaeg: 04-Aug-2010
  • Kirjastus: Elsevier Science Ltd
  • ISBN-10: 0444529535
  • ISBN-13: 9780444529534
  • Formaat: Hardback, 416 pages, kõrgus x laius: 229x152 mm
  • Sari: Developments in Petroleum Science
  • Ilmumisaeg: 04-Aug-2010
  • Kirjastus: Elsevier Science Ltd
  • ISBN-10: 0444529535
  • ISBN-13: 9780444529534
This reference presents a comprehensive description of flow through porous media and solutions to pressure diffusion problems in homogenous, layered, and heterogeneous reservoirs. It covers the fundamentals of interpretation techniques for formation tester pressure gradients, and pretests, multiprobe and packer pressure transient tests, including derivative, convolution, and pressure-rate and pressure-pressure deconvolution. Emphasis is placed on the maximum likelihood method that enables one to estimate error variances in pressure data along with the unknown formation parameters.
  • Serves as a training manual for geologists, petrophysicists, and reservoir engineers on formation and pressure transient testing
  • Offers interpretation techniques for immediate application in the field
  • Provides detailed coverage of pretests, multiprobe and packer pressure transient tests, including derivative, convolution, and pressure-rate and pressure-pressure deconvolution


This reference presents a comprehensive description of flow through porous media and solutions to pressure diffusion problems in homogenous, layered, and heterogeneous reservoirs. It covers the fundamentals of interpretation techniques for formation tester pressure gradients, and pretests, multiprobe and packer pressure transient tests, including derivative, convolution, and pressure-rate and pressure-pressure deconvolution. Emphasis is placed on the maximum likelihood method that enables one to estimate error variances in pressure data along with the unknown formation parameters.
  • Serves as a training manual for geologists, petrophysicists, and reservoir engineers on formation and pressure transient testing
  • Offers interpretation techniques for immediate application in the field
  • Provides detailed coverage of pretests, multiprobe and packer pressure transient tests, including derivative, convolution, and pressure-rate and pressure-pressure deconvolution
Preface xi
Introduction xv
Nomenclature xxi
1 Formation and Well Testing Hardware and Test Types
1(26)
1.1 Testing Hardware
1(22)
1.1.1 Well testing hardware
1(10)
1.1.2 Formation testing hardware
11(5)
1.1.3 Pressure gauges and their metrology
16(7)
1.2 Pressure Transient Test Types
23(4)
1.2.1 Drawdown tests
25(1)
1.2.2 Pressure buildup tests
26(1)
2 Mathematical Preliminaries and Flow Regimes
27(24)
2.1 Introduction
27(4)
2.2 Point-Source Solutions
31(4)
2.2.1 Spherical flow regime for drawdown tests
32(2)
2.2.2 Spherical flow regime for buildup tests
34(1)
2.3 Line-Source Solutions
35(6)
2.3.1 Radial flow regime for drawdown tests
37(1)
2.3.2 Radial flow regime for buildup tests
38(3)
2.4 Skin Factor
41(1)
2.5 Wellbore Storage
42(4)
2.6 Flow Regime Identification
46(5)
3 Convolution
51(64)
3.1 Introduction
51(2)
3.2 Convolution Integral
53(5)
3.3 Discrete Convolution
58(1)
3.4 Duhamel's (Superposition) Theorem and Pressure-Rate Convolution
59(7)
3.5 Wellbore Pressure for Certain Variable Sandface Flow-Rate Schedules
66(4)
3.5.1 Polynomial rate functions
67(1)
3.5.2 Exponential flow rate
68(2)
3.6 Logarithmic Convolution (Superposition or Multirate) Analysis
70(6)
3.7 Rate-Pressure Convolution
76(1)
3.8 Pressure-Pressure Convolution
77(38)
3.8.1 Pressure-pressure convolution for multiwell pressure transient testing
78(7)
3.8.2 Pressure-pressure convolution for two-well interference test
85(10)
3.8.3 Pressure-pressure convolution for wireline formation testers
95(20)
4 Deconvolution
115(82)
4.1 Introduction
115(4)
4.2 Analytical Deconvolutions
119(2)
4.3 Discrete Numerical Deconvolution without Measurement Noise
121(3)
4.4 Deconvolution with Constraints
124(2)
4.5 Nonlinear Least-Squares Pressure-Rate Deconvolution
126(15)
4.6 Practicalities of Deconvolution
141(21)
4.6.1 Data selection
141(7)
4.6.2 Flow-rate estimation from deconvolution
148(2)
4.6.3 Deconvolution parameters selection
150(12)
4.7 Pressure-Rate Deconvolution Examples
162(14)
4.7.1 Simulated well test example
162(3)
4.7.2 Horizontal field test example
165(5)
4.7.3 Interval pressure transient test (IPTT) field example
170(6)
4.8 Pressure-Pressure (p-p) Deconvolution
176(3)
4.9 Pressure-Pressure Deconvolution Examples
179(18)
4.9.1 Simulated slanted well IPTT example
179(10)
4.9.2 Vertical well IPTT field Example 1
189(3)
4.9.3 Vertical well IPTT field Example 2
192(5)
5 Nonlinear Parameter Estimation
197(106)
5.1 Introduction
198(1)
5.2 Parameter Estimation Problem for Pressure-Transient Test Interpretation
199(4)
5.3 Parameter Estimation Methods
203(2)
5.4 Likelihood Function and Maximum Likelihood Estimate
205(8)
5.4.1 Single-parameter linear model
206(4)
5.4.2 Single-parameter nonlinear model
210(3)
5.5 Extension of Likelihood Function to Multiple Sets of Observed Data
213(1)
5.6 Least-Squares Estimation Methods
214(4)
5.7 Maximum Likelihood Estimation for Unknown Diagonal Covariance
218(10)
5.7.1 Single-parameter linear model case
221(3)
5.7.2 An example application
224(4)
5.8 Use of Prior Information in ML Estimation: Bayesian Framework
228(11)
5.8.1 Single-parameter linear model case
235(2)
5.8.2 An example application
237(2)
5.9 Simultaneous vs. Sequential History Matching of Observed Data Sets
239(5)
5.10 Summary on MLE and LSE Methods
244(2)
5.11 Minimization of MLE and LSE Objective Functions
246(5)
5.12 Constraining Unknown Parameters in Minimization
251(1)
5.13 Computation of Sensitivity Coefficients
252(1)
5.14 Statistical Inference
253(4)
5.15 Examples
257(46)
5.15.1 Example 1
257(4)
5.15.2 Example 2
261(8)
5.15.3 Example 3
269(7)
5.15.4 Example 4
276(5)
5.15.5 Example 5
281(6)
5.15.6 Example 6
287(16)
6 Pressure Transient Test Design and Interpretation
303(58)
6.1 Introduction
303(2)
6.2 Pressure Transient Test Design and Intrpretation Workflow
305(12)
6.2.1 Development of the geological and reservoir model
309(1)
6.2.2 Testing hardware and gauge selection
310(1)
6.2.3 Test design
311(1)
6.2.4 Operation of test and data acquisition
311(1)
6.2.5 Real-time interpretation
312(3)
6.2.6 Final interpretation and validation
315(2)
6.3 Multiwell Interference Test Example
317(20)
6.4 Horizontal Well Test Interpretation of a Field Example
337(24)
6.4.1 First buildup test (BU1) interpretation
340(5)
6.4.2 Second buildup test (BU2) interpretation
345(12)
6.4.3 Interpretation summary of two buildup tests from well X-184
357(4)
References 361(12)
Subject Index 373