PREFACE |
|
xiii | |
|
CHAPTER 1 Finite Element Method Prerequisites |
|
|
1 | (33) |
|
|
1 | (1) |
|
1.2. Matrix Operations for the Finite Element Method |
|
|
1 | (20) |
|
1.2.1. Basic Matrix Definitions |
|
|
2 | (1) |
|
1.2.2. Basic Matrix Operations |
|
|
3 | (6) |
|
|
9 | (1) |
|
1.2.4. Adjoint Method of Matrix Inversion |
|
|
10 | (4) |
|
1.2.5. Gauss-Jordan Method of Matrix Inversion |
|
|
14 | (4) |
|
1.2.6. Choleski's Method of Matrix Inversion |
|
|
18 | (3) |
|
1.3. Algebraic Equation Systems |
|
|
21 | (7) |
|
1.3.1. Reduction Solution Procedure |
|
|
21 | (3) |
|
1.3.2. Submatrix Solution Procedure |
|
|
24 | (2) |
|
1.3.3. Solution without Rearrangement |
|
|
26 | (1) |
|
1.3.4. Penalty Solution Procedure |
|
|
27 | (1) |
|
|
28 | (6) |
|
|
28 | (1) |
|
|
29 | (5) |
|
CHAPTER 2 The Finite Element Method |
|
|
34 | (11) |
|
|
34 | (1) |
|
2.2. Nodes, Equilibrium, and Continuity |
|
|
34 | (2) |
|
|
36 | (1) |
|
|
36 | (4) |
|
2.4.1. Element Stiffness Equations |
|
|
37 | (1) |
|
2.4.2. Global Stiffness Equations |
|
|
38 | (1) |
|
2.4.3. Global and Local Reference Axes |
|
|
39 | (1) |
|
2.5. System Restraints: Boundary Conditions |
|
|
40 | (2) |
|
2.5.1. Essential Boundary Conditions |
|
|
40 | (1) |
|
2.5.2. Natural Boundary Conditions |
|
|
40 | (1) |
|
2.5.3. Mixed Boundary Conditions |
|
|
41 | (1) |
|
2.5.4. Restraint Sufficiency |
|
|
42 | (1) |
|
2.6. Steps in the Finite Element Process |
|
|
42 | (2) |
|
|
44 | (1) |
|
CHAPTER 3 Element Stiffness Equations by Direct Methods |
|
|
45 | (23) |
|
3.1. Direct Determination of Element Stiffness Equations |
|
|
45 | (10) |
|
3.1.1. Element Stiffness Matrix: Global Axes |
|
|
45 | (5) |
|
3.1.2. Element Stiffness Matrix: Local Axes |
|
|
50 | (3) |
|
3.1.3. Element Load Vector |
|
|
53 | (2) |
|
3.2. Transformation of Element Stiffness Equations: 1D Elements in 2D and 3D Space |
|
|
55 | (7) |
|
3.2.1. Displacement Transformation |
|
|
55 | (3) |
|
3.2.2. Force and Moment Transformation |
|
|
58 | (3) |
|
3.2.3. Element Stiffness Matrix Transformation |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
62 | (6) |
|
CHAPTER 4 Global Stiffness Equations |
|
|
68 | (31) |
|
|
68 | (1) |
|
4.2. Assembly of Global Stiffness Matrix |
|
|
69 | (4) |
|
4.2.1. Equilibrium and Compatibility at Nodes |
|
|
69 | (3) |
|
4.2.2. A Process for the Assembly |
|
|
72 | (1) |
|
4.3. Assembly of Global Load Vector |
|
|
73 | (2) |
|
|
74 | (1) |
|
|
74 | (1) |
|
4.4. Global Displacement Vector |
|
|
75 | (1) |
|
4.5. Solution of Global Stiffness Equations |
|
|
75 | (11) |
|
4.5.1. Plane Truss Example |
|
|
76 | (4) |
|
4.5.2. Plane Frame Example |
|
|
80 | (6) |
|
4.6. Element Internal Forces |
|
|
86 | (1) |
|
4.7. Banded Global Stiffness Matrix |
|
|
87 | (4) |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
92 | (7) |
|
CHAPTER 5 Element Stiffness Equations by Displaced State Virtual Work Applications |
|
|
99 | (32) |
|
5.1. Displaced State of the Structure |
|
|
99 | (7) |
|
5.1.1. Global Displacement Basis Functions |
|
|
99 | (3) |
|
5.1.2. Element Displacement Shape Functions |
|
|
102 | (4) |
|
5.2. Virtual Work Basis of Element Stiffness Equations |
|
|
106 | (20) |
|
5.2.1. Principle of Virtual Work |
|
|
107 | (2) |
|
5.2.2. Element Stiffness Equations |
|
|
109 | (7) |
|
5.2.3. Beam Finite Element on an Elastic Foundation |
|
|
116 | (3) |
|
5.2.4. Axial Finite Elements |
|
|
119 | (7) |
|
|
126 | (1) |
|
|
126 | (1) |
|
|
127 | (4) |
|
CHAPTER 6 General Approach to Element Stiffness Equations |
|
|
131 | (25) |
|
|
131 | (1) |
|
|
131 | (6) |
|
6.3. Strain and Stress Displacement Relationships |
|
|
137 | (2) |
|
6.4. Element Stiffness Equations |
|
|
139 | (4) |
|
6.4.1. Virtual Strain Displacement Relationships |
|
|
139 | (1) |
|
6.4.2. Virtual Strain Energy |
|
|
140 | (1) |
|
6.4.3. Virtual Work of External Actions |
|
|
141 | (1) |
|
6.4.4. General Expressions for Element Stiffness Equations |
|
|
142 | (1) |
|
6.5. Generalized Stress and Strain |
|
|
143 | (3) |
|
|
146 | (7) |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
154 | (2) |
|
CHAPTER 7 Plane Stress and Plane Strain |
|
|
156 | (20) |
|
|
156 | (1) |
|
7.2. Isotropic Plane Stress and Plane Strain |
|
|
156 | (1) |
|
7.3. Biaxial Stress Transformation |
|
|
157 | (4) |
|
7.4. Biaxial Strain Transformation |
|
|
161 | (3) |
|
7.5. Orthotropic Plane Stress |
|
|
164 | (6) |
|
7.6. Orthotropic Plane Strain |
|
|
170 | (2) |
|
|
172 | (1) |
|
|
173 | (1) |
|
|
173 | (3) |
|
CHAPTER 8 Plane Stress Structural Triangular Finite Elements |
|
|
176 | (49) |
|
|
176 | (1) |
|
8.2. Constant-Strain Triangular Element (3-Node, 6-dof) |
|
|
176 | (17) |
|
8.2.1. Shape and Displacement Functions |
|
|
177 | (4) |
|
8.2.2. Element Stiffness Matrix |
|
|
181 | (3) |
|
8.2.3. Loads between Nodes |
|
|
184 | (5) |
|
8.2.4. Plane Stress Plate Example Analysis |
|
|
189 | (4) |
|
8.3. Natural Coordinates and Quadrature for Triangular Elements |
|
|
193 | (6) |
|
8.3.1. Natural Coordinates for Triangular Elements |
|
|
194 | (3) |
|
8.3.2. Quadrature for Triangular Elements |
|
|
197 | (1) |
|
8.3.3. Example Body Force |
|
|
197 | (2) |
|
8.4. Natural Coordinates and Quadrature for Line Segments |
|
|
199 | (5) |
|
8.4.1. Natural Coordinates for Lines |
|
|
199 | (3) |
|
8.4.2. Quadrature for a Line Segment |
|
|
202 | (1) |
|
|
202 | (2) |
|
8.5. Linear Strain Triangular Element (6-Node, 12-dof) |
|
|
204 | (13) |
|
8.5.1. Shape and Displacement Functions |
|
|
204 | (2) |
|
8.5.2. Element Stiffness Matrix |
|
|
206 | (2) |
|
8.5.3. Numerical Quadrature over Triangular Area |
|
|
208 | (2) |
|
8.5.4. Loads between Nodes |
|
|
210 | (1) |
|
8.5.5. Linear Strain Element Example Analysis |
|
|
210 | (7) |
|
|
217 | (1) |
|
|
218 | (1) |
|
|
219 | (6) |
|
CHAPTER 9 Isoparametric Plane Stress Structural Quadrilateral Finite Elements |
|
|
225 | (63) |
|
|
225 | (1) |
|
9.2. Bilinear Rectangular Element (4-Node, 8-dof) |
|
|
226 | (8) |
|
9.2.1. Shape and Displacement Functions |
|
|
226 | (4) |
|
9.2.2. Element Stiffness Matrix |
|
|
230 | (4) |
|
9.3. Quadrilateral Element (4-Node, 8-dof) |
|
|
234 | (7) |
|
9.3.1. Isoparametric Transformation |
|
|
235 | (5) |
|
9.3.2. Element Stiffness Matrix |
|
|
240 | (1) |
|
|
241 | (12) |
|
9.4.1. Nodal Point Quadrature |
|
|
242 | (2) |
|
9.4.2. Gaussian Quadrature: Functions of One Variable |
|
|
244 | (3) |
|
9.4.3. Gaussian Quadrature: Functions of Two Variables |
|
|
247 | (6) |
|
9.5. Element Mapping and Master Element Calculations |
|
|
253 | (19) |
|
|
254 | (4) |
|
9.5.2. Master Element Stiffness Calculations |
|
|
258 | (7) |
|
9.5.3. Master Element Equivalent Nodal Loads |
|
|
265 | (7) |
|
9.6. Quadratic Quadrilateral Elements |
|
|
272 | (5) |
|
9.6.1. Serendipity Element (8-Node, 16-dof) |
|
|
272 | (2) |
|
9.6.2. Lagrange Element (9-Node, 18-dof) |
|
|
274 | (3) |
|
|
277 | (1) |
|
|
277 | (1) |
|
|
278 | (10) |
|
CHAPTER 10 Flat Plate Flexural Finite Elements |
|
|
288 | (57) |
|
|
288 | (1) |
|
10.2. Thin, Flat Plate Small Deflection Flexure Theory |
|
|
289 | (7) |
|
10.3. Rectangular Thin Plate Element (4-Node, 12-dof) |
|
|
296 | (26) |
|
10.3.1. Shape and Displacement Functions |
|
|
298 | (3) |
|
10.3.2. Element Stiffness Matrix: Physical Displacements |
|
|
301 | (7) |
|
10.3.3. Element Stiffness Matrix: Generalized dof |
|
|
308 | (3) |
|
|
311 | (5) |
|
10.3.5. Effect of an Elastic Foundation |
|
|
316 | (4) |
|
10.3.6. Restraints and Boundary Conditions |
|
|
320 | (1) |
|
10.3.7. Shape Functions and the Generalized dof Form |
|
|
321 | (1) |
|
10.4. Other Flat Plate Flexure Finite Elements |
|
|
322 | (16) |
|
10.4.1. Rectangular Thin Plate Element (4-Node, 16-dof) |
|
|
322 | (4) |
|
10.4.2. Triangular Thin Plate Element (3-Node, 9-dof) |
|
|
326 | (6) |
|
10.4.3. Rectangular Thick Plate Element (4-Node, 12-dof) |
|
|
332 | (6) |
|
10.5. Quadrilateral Thick Flat Plate Flexure Element |
|
|
338 | (1) |
|
|
339 | (1) |
|
|
339 | (1) |
|
|
340 | (5) |
|
CHAPTER 11 Axisymmetric Structural Finite Elements |
|
|
345 | (40) |
|
|
345 | (1) |
|
11.2. Axisymmetric Stress, Strain, and Elastic Properties |
|
|
346 | (1) |
|
11.3. Axisymmetric Structural Finite Elements |
|
|
347 | (1) |
|
11.4. Triangular Finite Element (3-Node, 6-dof) |
|
|
348 | (9) |
|
11.4.1. Shape and Displacement Functions |
|
|
349 | (1) |
|
11.4.2. Element Stiffness Matrix: Physical dof |
|
|
350 | (4) |
|
11.4.3. Element Stiffness Matrix: Generalized dof |
|
|
354 | (3) |
|
11.5. Quadrilateral Finite Element (4-Node, 8-dof) |
|
|
357 | (7) |
|
11.5.1. Shape and Displacement Functions |
|
|
358 | (1) |
|
11.5.2. Isoparametric Transformation |
|
|
359 | (1) |
|
11.5.3. Element Stiffness Matrix |
|
|
359 | (5) |
|
|
364 | (11) |
|
11.6.1. Concentrated Axial Force |
|
|
364 | (1) |
|
11.6.2. Uniform Line Force |
|
|
364 | (2) |
|
11.6.3. Distributed Surface Force |
|
|
366 | (3) |
|
11.6.4. Distributed Body Force |
|
|
369 | (3) |
|
11.6.5. Equivalent Force Calculations |
|
|
372 | (3) |
|
|
375 | (1) |
|
|
376 | (1) |
|
|
377 | (8) |
|
CHAPTER 12 Structural Finite Elements in Perspective |
|
|
385 | (4) |
|
|
385 | (1) |
|
12.2. Modeling Structures with Finite Elements |
|
|
385 | (2) |
|
12.3. Linear Algebra Basis |
|
|
387 | (1) |
|
12.4. The Finite Element Method |
|
|
387 | (1) |
|
|
388 | (1) |
APPENDIX Matrix Operations for the Finite Element Method Using MATLAB |
|
389 | (58) |
ANSWERS TO SELECTED PROBLEMS |
|
447 | (38) |
INDEX |
|
485 | |