Preface |
|
xix | |
0 Preliminaries |
|
1 | (40) |
|
|
1 | (6) |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
4 | (2) |
|
|
6 | (1) |
|
|
7 | (3) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
10 | (5) |
|
|
11 | (1) |
|
Interior, Closure, and Boundary |
|
|
12 | (1) |
|
Sequential Convergence. Completeness |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
15 | (4) |
|
|
15 | (1) |
|
|
15 | (1) |
|
Completion of a Normed Space |
|
|
16 | (1) |
|
Infinite Series in Normed Spaces |
|
|
16 | (1) |
|
Unordered Sums in Normed Spaces |
|
|
17 | (1) |
|
Bounded Linear Transformations |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
19 | (4) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
21 | (2) |
|
0.6 Continuity in Topological Spaces |
|
|
23 | (3) |
|
Definition and General Properties |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
25 | (1) |
|
The Space of Continuous Functions |
|
|
25 | (1) |
|
|
25 | (1) |
|
0.7 Normal Topological Spaces |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
27 | (1) |
|
0.8 Compact Topological Spaces |
|
|
27 | (3) |
|
Convergence in Compact Spaces |
|
|
28 | (1) |
|
Compactness of Cartesian Products |
|
|
29 | (1) |
|
Continuity and Compactness |
|
|
29 | (1) |
|
0.9 Totally Bounded Metric Spaces |
|
|
30 | (1) |
|
|
31 | (1) |
|
0.11 The Stone-Weierstrass Theorem |
|
|
32 | (1) |
|
0.12 Locally Compact Topological Spaces |
|
|
33 | (3) |
|
|
33 | (1) |
|
Functions with Compact Support |
|
|
34 | (1) |
|
Functions That Vanish at Infinity |
|
|
35 | (1) |
|
The One-Point Compactification |
|
|
35 | (1) |
|
0.13 Spaces of Differentiable Functions |
|
|
36 | (1) |
|
|
37 | (2) |
|
|
39 | (2) |
I Measure and Integration |
|
41 | (156) |
|
|
43 | (32) |
|
|
43 | (1) |
|
|
44 | (6) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
Pi-Systems and Lambda-Systems |
|
|
47 | (1) |
|
|
48 | (2) |
|
|
50 | (4) |
|
|
50 | (1) |
|
Properties and Examples of Measures |
|
|
51 | (1) |
|
|
52 | (2) |
|
1.4 Complete Measure Spaces |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
1.5 Outer Measure and Measurability |
|
|
55 | (3) |
|
Construction of an Outer Measure |
|
|
56 | (1) |
|
|
56 | (2) |
|
|
58 | (1) |
|
1.6 Extension of a Measure |
|
|
58 | (5) |
|
The Measure Extension Theorem |
|
|
59 | (2) |
|
Approximation Property of the Extension |
|
|
61 | (1) |
|
Completeness of the Extension |
|
|
61 | (1) |
|
Uniqueness of the Extension |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
63 | (3) |
|
|
63 | (2) |
|
Construction of the Measure |
|
|
65 | (1) |
|
|
65 | (1) |
|
1.8 Lebesgue-Stieltjes Measures |
|
|
66 | (5) |
|
|
66 | (1) |
|
One-Dimensional Distribution Functions |
|
|
67 | (2) |
|
* Higher Dimensional Distribution Functions |
|
|
69 | (1) |
|
|
70 | (1) |
|
|
71 | (4) |
|
An Uncountable Set with Lebesgue Measure Zero |
|
|
71 | (1) |
|
Non-Lebesgue-Measurable Sets |
|
|
71 | (1) |
|
A Lebesgue Measurable, Non-Borel Set |
|
|
72 | (1) |
|
|
73 | (2) |
|
|
75 | (14) |
|
2.1 Measurable Transformations |
|
|
75 | (3) |
|
|
75 | (2) |
|
|
77 | (1) |
|
2.2 Measurable Numerical Functions |
|
|
78 | (4) |
|
Criteria for Measurability |
|
|
78 | (1) |
|
Almost Everywhere Properties |
|
|
79 | (1) |
|
Combinatorial and Limit Properties of Measurable Functions |
|
|
79 | (2) |
|
|
81 | (1) |
|
|
82 | (3) |
|
A Fundamental Convergence Theorem |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
84 | (1) |
|
2.4 Convergence of Measurable Functions |
|
|
85 | (4) |
|
|
85 | (1) |
|
Relationships Among the Modes of Convergence |
|
|
86 | (1) |
|
|
87 | (2) |
|
|
89 | (34) |
|
3.1 Construction of the Integral |
|
|
89 | (3) |
|
Integral of a Nonnegative Simple Function |
|
|
89 | (1) |
|
Integral of a Real-Valued Function |
|
|
90 | (1) |
|
Integral of a Complex-Valued Function |
|
|
91 | (1) |
|
Integral over a Measurable Set |
|
|
91 | (1) |
|
3.2 Basic Properties of the Integral |
|
|
92 | (8) |
|
Almost Everywhere Properties |
|
|
92 | (1) |
|
Monotone Convergence Theorem |
|
|
93 | (1) |
|
Linearity of the Integral |
|
|
93 | (3) |
|
Integration Against an Image Measure |
|
|
96 | (1) |
|
Integration Against a Measure with Density |
|
|
96 | (1) |
|
Change of Variables Theorem |
|
|
97 | (1) |
|
|
97 | (3) |
|
3.3 Connections with the Riemann Integral on Rd |
|
|
100 | (8) |
|
|
101 | (2) |
|
|
103 | (1) |
|
Measure Zero Criterion for Riemann Integrability |
|
|
104 | (2) |
|
Improper Riemann Integrals |
|
|
106 | (1) |
|
|
107 | (1) |
|
|
108 | (3) |
|
The General Monotone Convergence Theorem |
|
|
108 | (1) |
|
|
109 | (1) |
|
The Dominated Convergence Theorem |
|
|
109 | (1) |
|
|
110 | (1) |
|
3.5 Integration against a Product Measure |
|
|
111 | (5) |
|
Construction of the Product of Two Measures |
|
|
111 | (1) |
|
|
112 | (2) |
|
|
114 | (1) |
|
|
115 | (1) |
|
3.6 Applications of Fubini's Theorem |
|
|
116 | (7) |
|
|
116 | (1) |
|
|
116 | (2) |
|
|
118 | (1) |
|
Volume of a d-Dimensional Ball |
|
|
118 | (1) |
|
Integration of Radial Functions |
|
|
119 | (1) |
|
Surface Area of a d-Dimensional Ball |
|
|
120 | (1) |
|
|
121 | (2) |
|
|
123 | (16) |
|
4.1 Definition and General Properties |
|
|
123 | (6) |
|
The Case 1 < or equal to p < infinity |
|
|
123 | (3) |
|
|
126 | (1) |
|
|
127 | (1) |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
129 | (2) |
|
Approximation by Simple Functions |
|
|
129 | (1) |
|
Approximation by Continuous Functions |
|
|
130 | (1) |
|
Approximation by Step Functions |
|
|
131 | (1) |
|
|
131 | (1) |
|
|
131 | (2) |
|
|
133 | (1) |
|
4.4 Uniform Integrability |
|
|
133 | (3) |
|
|
135 | (1) |
|
4.5 Convex Functions and Jensen's Inequality |
|
|
136 | (3) |
|
|
138 | (1) |
|
|
139 | (30) |
|
|
139 | (4) |
|
Definition and a Fundamental Example |
|
|
139 | (1) |
|
The Hahn-Jordan Decomposition |
|
|
140 | (2) |
|
|
142 | (1) |
|
|
143 | (5) |
|
The Total Variation Measure |
|
|
144 | (1) |
|
The Vitali-Hahn-Saks Theorem |
|
|
145 | (1) |
|
The Banach Space of Complex Measures |
|
|
146 | (1) |
|
Integration against a Signed or Complex Measure |
|
|
147 | (1) |
|
|
147 | (1) |
|
5.3 Absolute Continuity of Measures |
|
|
148 | (6) |
|
General Properties of Absolute Continuity |
|
|
148 | (1) |
|
The Radon-Nikodym Theorem |
|
|
149 | (3) |
|
Lebesgue-Decomposition of a Measure |
|
|
152 | (1) |
|
|
153 | (1) |
|
5.4 Differentiation of Measures |
|
|
154 | (5) |
|
Definition and Properties of the Derivative |
|
|
154 | (2) |
|
Connections with the Classical Derivative |
|
|
156 | (1) |
|
Existence of the Measure Derivative |
|
|
157 | (2) |
|
|
159 | (1) |
|
5.5 Functions of Bounded Variation |
|
|
159 | (5) |
|
Definition and Basic Properties |
|
|
159 | (2) |
|
The Total Variation Function |
|
|
161 | (1) |
|
Differentiation of Functions of Bounded Variation |
|
|
162 | (1) |
|
|
163 | (1) |
|
5.6 Absolutely Continuous Functions |
|
|
164 | (5) |
|
Definition and Basic Properties |
|
|
164 | (1) |
|
Fundamental Theorems of Calculus |
|
|
165 | (2) |
|
|
167 | (2) |
|
|
169 | (12) |
|
6.1 Convolution of Functions |
|
|
169 | (2) |
|
Definition and Basic Properties |
|
|
169 | (1) |
|
|
170 | (1) |
|
|
171 | (1) |
|
6.2 The Fourier Transform |
|
|
171 | (3) |
|
Definition and Basic Properties |
|
|
171 | (1) |
|
The Fourier Inversion Theorem |
|
|
172 | (2) |
|
|
174 | (1) |
|
6.3 Rapidly Decreasing Functions |
|
|
174 | (4) |
|
Definition and Basic Properties |
|
|
174 | (2) |
|
|
176 | (1) |
|
|
177 | (1) |
|
6.4 Fourier Analysis of Measures on Rd |
|
|
178 | (3) |
|
|
178 | (1) |
|
The Fourier-Stieltjes Transform |
|
|
179 | (1) |
|
|
180 | (1) |
|
7 Measures on Locally Compact Spaces |
|
|
181 | (16) |
|
|
181 | (3) |
|
Definition and Basic Properties |
|
|
181 | (1) |
|
Consequences of Regularity |
|
|
182 | (1) |
|
The Space of Complex Radon Measures |
|
|
182 | (1) |
|
The Support of a Radon Measure |
|
|
183 | (1) |
|
|
184 | (1) |
|
7.2 The Riesz Representation Theorem |
|
|
184 | (4) |
|
|
187 | (1) |
|
7.3 Products of Radon Measures |
|
|
188 | (3) |
|
|
188 | (1) |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
191 | (2) |
|
|
192 | (1) |
|
7.5 The Daniell-Stone Representation Theorem |
|
|
193 | (4) |
II Functional Analysis |
|
197 | (170) |
|
|
199 | (42) |
|
8.1 General Properties of Normed Spaces |
|
|
199 | (7) |
|
|
200 | (1) |
|
|
201 | (1) |
|
|
201 | (1) |
|
Finite Dimensional Spaces |
|
|
202 | (1) |
|
|
203 | (2) |
|
|
205 | (1) |
|
8.2 Bounded Linear Transformations |
|
|
206 | (4) |
|
|
207 | (1) |
|
|
208 | (1) |
|
|
208 | (1) |
|
|
208 | (1) |
|
|
209 | (1) |
|
8.3 Concrete Representations of Dual Spaces |
|
|
210 | (4) |
|
|
210 | (1) |
|
|
210 | (1) |
|
|
211 | (1) |
|
|
212 | (1) |
|
|
213 | (1) |
|
|
214 | (4) |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
216 | (1) |
|
|
217 | (1) |
|
8.5 Hahn-Banach Extension Theorems |
|
|
218 | (4) |
|
|
218 | (1) |
|
|
219 | (1) |
|
|
220 | (1) |
|
The Bidual of a Normed Space |
|
|
221 | (1) |
|
|
221 | (1) |
|
|
222 | (1) |
|
8.6 Applications of the Hahn-Banach Theorem |
|
|
222 | (3) |
|
|
222 | (1) |
|
|
223 | (1) |
|
|
224 | (1) |
|
|
224 | (1) |
|
|
225 | (1) |
|
8.7 Baire Category in Banach Spaces |
|
|
225 | (4) |
|
The Uniform Boundedness Principle |
|
|
225 | (1) |
|
|
226 | (2) |
|
|
228 | (1) |
|
|
228 | (1) |
|
|
229 | (5) |
|
|
229 | (2) |
|
Vector-Valued Analytic Functions |
|
|
231 | (1) |
|
|
231 | (1) |
|
|
232 | (1) |
|
|
233 | (1) |
|
|
234 | (2) |
|
Definition and Properties |
|
|
234 | (1) |
|
|
234 | (1) |
|
Duals of Quotient Spaces and Subspaces |
|
|
235 | (1) |
|
|
236 | (1) |
|
|
236 | (5) |
|
* Fredholm Alternative for Compact Operators |
|
|
238 | (2) |
|
|
240 | (1) |
|
|
241 | (16) |
|
|
241 | (5) |
|
|
241 | (1) |
|
|
242 | (2) |
|
|
244 | (2) |
|
|
246 | (1) |
|
9.2 Continuous Linear Functionals |
|
|
246 | (3) |
|
Continuity on Topological Vector Spaces |
|
|
246 | (2) |
|
Continuity on Locally Convex Spaces |
|
|
248 | (1) |
|
Continuity on Finite Dimensional Spaces |
|
|
248 | (1) |
|
|
248 | (1) |
|
9.3 Hahn-Banach Separation Theorems |
|
|
249 | (3) |
|
|
249 | (1) |
|
Strict Separation in a LCS |
|
|
249 | (1) |
|
Some Consequences of the Separation Theorems |
|
|
250 | (2) |
|
|
252 | (1) |
|
|
252 | (1) |
|
|
252 | (5) |
|
|
252 | (1) |
|
|
253 | (1) |
|
|
254 | (1) |
|
|
255 | (2) |
|
10 Weak Topologies on Normed Spaces |
|
|
257 | (16) |
|
|
257 | (5) |
|
Definition and General Properties |
|
|
257 | (1) |
|
Weak Sequential Convergence |
|
|
258 | (1) |
|
|
259 | (1) |
|
* Application: Weak Bases |
|
|
260 | (1) |
|
|
261 | (1) |
|
|
262 | (5) |
|
Definition and General Properties |
|
|
262 | |
|
|
62 | (201) |
|
The Banach-Alaoglu Theorem |
|
|
263 | (1) |
|
*Application: Means on Function Spaces |
|
|
263 | (1) |
|
|
264 | (1) |
|
* The Closed Range Theorem |
|
|
265 | (1) |
|
|
266 | (1) |
|
|
267 | (2) |
|
Examples and Basic Properties |
|
|
267 | (1) |
|
Weak Compactness and Reflexivity |
|
|
268 | (1) |
|
|
268 | (1) |
|
10.4 Uniformly Convex Spaces |
|
|
269 | (4) |
|
Definition and General Properties |
|
|
269 | (1) |
|
Connections with Strict Convexity |
|
|
270 | (1) |
|
Weak and Strong Convergence |
|
|
270 | (1) |
|
Connection with Reflexivity |
|
|
271 | (1) |
|
|
271 | (2) |
|
|
273 | (16) |
|
|
273 | (5) |
|
|
273 | (1) |
|
Semi-Inner-Product Spaces |
|
|
274 | (1) |
|
Inner Product Spaces. Hilbert Spaces |
|
|
275 | (2) |
|
Isomorphisms of Hilbert Spaces |
|
|
277 | (1) |
|
|
278 | (1) |
|
|
278 | (3) |
|
|
278 | (2) |
|
The Riesz Representation Theorem |
|
|
280 | (1) |
|
|
280 | (1) |
|
|
281 | (5) |
|
The Dimension of a Hilbert Space |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
285 | (1) |
|
11.4 The Hilbert Space Adjoint |
|
|
286 | (3) |
|
Bounded Sesquilinear Functionals |
|
|
286 | (1) |
|
|
287 | (1) |
|
Definition and Properties of the Adjoint |
|
|
287 | (1) |
|
|
288 | (1) |
|
|
288 | (1) |
|
|
289 | (26) |
|
12.1 Classes of Operators |
|
|
289 | (7) |
|
|
289 | (1) |
|
|
289 | (2) |
|
|
291 | (1) |
|
Orthogonal Projections and Idempotents |
|
|
292 | (1) |
|
|
293 | (1) |
|
|
294 | (1) |
|
|
295 | (1) |
|
12.2 Compact Operators and Operators of Finite Rank |
|
|
296 | (3) |
|
|
297 | (1) |
|
|
297 | (1) |
|
|
298 | (1) |
|
12.3 The Spectral Theorem for Compact Normal Operators |
|
|
299 | (4) |
|
Eigenvalues and Eigenvectors |
|
|
299 | (1) |
|
|
299 | (2) |
|
|
301 | (2) |
|
|
303 | (1) |
|
12.4 Hilbert-Schmidt Operators |
|
|
303 | (6) |
|
|
303 | (1) |
|
The Hilbert-Schmidt Inner Product |
|
|
304 | (2) |
|
The Hilbert-Schmidt Operator The Tensor Product of A and B |
|
|
306 | (1) |
|
Hilbert-Schmidt Integral Operators |
|
|
307 | (2) |
|
|
309 | (1) |
|
12.5 Trace Class Operators |
|
|
309 | (6) |
|
|
309 | (2) |
|
|
311 | (2) |
|
The Dual Spaces B0(H)' and B1(H)' |
|
|
313 | (1) |
|
|
314 | (1) |
|
|
315 | (26) |
|
|
315 | (4) |
|
|
315 | (1) |
|
The Group of Invertible Elements |
|
|
316 | (1) |
|
The Cauchy Product of Series |
|
|
317 | (1) |
|
|
318 | (1) |
|
|
319 | (5) |
|
The Spectrum of an Element |
|
|
319 | (1) |
|
The Spectral Radius Formula |
|
|
320 | (1) |
|
Normal Elements in a C*-Algebra |
|
|
321 | (2) |
|
|
323 | (1) |
|
13.3 The Spectrum of an Algebra |
|
|
324 | (2) |
|
|
324 | (1) |
|
|
324 | (2) |
|
|
326 | (1) |
|
|
326 | (3) |
|
The Representation Theorem |
|
|
326 | (1) |
|
Application: The Stone-Cech Compactification |
|
|
327 | (1) |
|
Application: Wiener's Theorem |
|
|
328 | (1) |
|
|
329 | (1) |
|
|
329 | (4) |
|
The Unitization of a Banach Algebra |
|
|
329 | (1) |
|
The Non-unital Representation Theorem |
|
|
330 | (1) |
|
|
330 | (1) |
|
|
331 | (1) |
|
|
332 | (1) |
|
|
333 | (8) |
|
The Continuous Functional Calculus |
|
|
333 | (1) |
|
Applications to Operators on Hilbert Space |
|
|
334 | (2) |
|
The Borel Functional Calculus |
|
|
336 | (2) |
|
The Spectral Theorem for Normal Operators |
|
|
338 | (1) |
|
|
339 | (2) |
|
|
341 | (26) |
|
14.1 Weak Sequential Compactness |
|
|
341 | (3) |
|
The Eberlein-Smulian Theorem |
|
|
342 | (2) |
|
14.2 Weak Compactness in L1 |
|
|
344 | (2) |
|
Weak Convergence and Uniform Integrability |
|
|
344 | (1) |
|
The Dunford-Pettis Theorem |
|
|
345 | (1) |
|
14.3 Convexity and Compactness |
|
|
346 | (2) |
|
The Krein-Smulian Theorem |
|
|
346 | (1) |
|
|
347 | (1) |
|
The Finite Dimensional Case |
|
|
347 | (1) |
|
|
348 | (4) |
|
|
348 | (2) |
|
|
350 | (2) |
|
14.5 Applications of the Krein-Milman Theorem |
|
|
352 | (5) |
|
Existence of Ergodic Measures |
|
|
352 | (1) |
|
The Stone-Weierstrass Theorem |
|
|
353 | (1) |
|
|
354 | (1) |
|
The Lyapunov Convexity Theorem |
|
|
355 | (1) |
|
The Ryll-Nardzewski Fixed Point Theorem |
|
|
356 | (1) |
|
14.6 Vector-Valued Integrals |
|
|
357 | (7) |
|
Weak Integrals in Banach Spaces |
|
|
358 | (2) |
|
Weak Integrals in Locally Convex Spaces |
|
|
360 | (1) |
|
|
361 | (3) |
|
|
364 | (3) |
III Applications |
|
367 | (126) |
|
|
369 | (16) |
|
|
369 | (2) |
|
The Frechet Space Cinfinityk (U) |
|
|
369 | (1) |
|
The Spaces D(U) and D'(U) |
|
|
370 | (1) |
|
Examples of Distributions |
|
|
370 | (1) |
|
15.2 Operations on Distributions |
|
|
371 | (1) |
|
Derivative of a Locally Integrable Function |
|
|
371 | (1) |
|
Derivative of a Distribution |
|
|
371 | (1) |
|
Multiplication by a Smooth Function |
|
|
372 | (1) |
|
Composition with Linear Maps |
|
|
372 | (1) |
|
15.3 Distributions with Compact Support |
|
|
372 | (2) |
|
15.4 Convolution of Distributions |
|
|
374 | (3) |
|
15.5 Tempered Distributions |
|
|
377 | (3) |
|
The Fourier Transform of a Tempered Distribution |
|
|
379 | (1) |
|
|
380 | (5) |
|
|
380 | (1) |
|
Application: Elliptic PDEs |
|
|
381 | (1) |
|
|
382 | (3) |
|
16 Analysis on Locally Compact Groups |
|
|
385 | (38) |
|
|
385 | (2) |
|
Definitions and Basic Properties |
|
|
385 | (1) |
|
Translation and Uniform Continuity |
|
|
386 | (1) |
|
|
387 | (7) |
|
Definition and Basic Properties |
|
|
387 | (2) |
|
Existence of Haar Measure |
|
|
389 | (2) |
|
Essential Uniqueness of Haar Measure |
|
|
391 | (1) |
|
|
392 | (2) |
|
|
394 | (3) |
|
Haar Measure on Direct Products |
|
|
394 | (1) |
|
Haar Measure on Semidirect Products |
|
|
394 | (2) |
|
Haar Measure on Quotient Groups |
|
|
396 | (1) |
|
16.4 The L1-Group Algebra |
|
|
397 | (4) |
|
Convolution and Involution |
|
|
397 | (2) |
|
|
399 | (1) |
|
|
400 | (1) |
|
|
401 | (10) |
|
Positive-Definite Functions |
|
|
401 | (1) |
|
Functions of Positive Type |
|
|
402 | (1) |
|
|
403 | (3) |
|
Irreducible Representations |
|
|
406 | (2) |
|
Unitary Representations of Compact Groups |
|
|
408 | (3) |
|
16.6 Locally Compact Abelian Groups |
|
|
411 | (12) |
|
|
411 | (4) |
|
|
415 | (1) |
|
|
416 | (3) |
|
|
419 | (1) |
|
The Pontrjagin Duality Theorem |
|
|
420 | (3) |
|
17 Analysis on Semigroups |
|
|
423 | (20) |
|
17.1 Semigroups with Topology |
|
|
423 | (1) |
|
17.2 Weakly Almost Periodic Functions |
|
|
424 | (5) |
|
Definition and Basic Properties |
|
|
424 | (1) |
|
The Dual of the Space of Weakly Almost Periodic Functions |
|
|
424 | (2) |
|
The Weakly Almost Periodic Compactification |
|
|
426 | (2) |
|
Invariant Means on Weakly Almost Periodic Functions |
|
|
428 | (1) |
|
17.3 Almost Periodic Functions |
|
|
429 | (2) |
|
Definition and Basic Properties |
|
|
429 | (1) |
|
The Almost Periodic Compactification |
|
|
430 | (1) |
|
17.4 The Structure of Compact Semigroups |
|
|
431 | (2) |
|
|
431 | (1) |
|
|
432 | (1) |
|
|
432 | (1) |
|
17.5 Strongly Almost Periodic Functions |
|
|
433 | (4) |
|
Definition and Basic Properties |
|
|
433 | (2) |
|
The Strongly Almost Periodic Compactification |
|
|
435 | (2) |
|
17.6 Semigroups of Operators |
|
|
437 | (6) |
|
Definitions and Basic Properties |
|
|
437 | (1) |
|
Dynamical Properties of Semigroups of Operators |
|
|
438 | (3) |
|
Ergodic Properties of Semigroups of Operators |
|
|
441 | (2) |
|
|
443 | (50) |
|
|
443 | (3) |
|
|
443 | (1) |
|
Probability Distributions |
|
|
444 | (2) |
|
|
446 | (2) |
|
|
446 | (1) |
|
Independent Random Variables |
|
|
446 | (2) |
|
18.3 Conditional Expectation |
|
|
448 | (1) |
|
18.4 Sequences of Independent Random Variables |
|
|
449 | (14) |
|
Infinite Product Measures |
|
|
450 | (2) |
|
The Distribution of a Sequence of Random Variables |
|
|
452 | (1) |
|
|
453 | (2) |
|
|
455 | (3) |
|
The Central Limit Theorem |
|
|
458 | (1) |
|
The Individual Ergodic Theorem |
|
|
459 | (3) |
|
|
462 | (1) |
|
18.5 Discrete-Time Martingales |
|
|
463 | (9) |
|
|
464 | (1) |
|
Definition and General Properties of Martingales |
|
|
464 | (2) |
|
Stopping Times. Optional Sampling |
|
|
466 | (2) |
|
|
468 | (1) |
|
Convergence of Martingales |
|
|
469 | (2) |
|
|
471 | (1) |
|
18.6 General Stochastic Processes |
|
|
472 | (4) |
|
The Consistency Conditions |
|
|
472 | (1) |
|
The Product of Measurable Spaces |
|
|
473 | (1) |
|
The Kolmogorov Extension Theorem |
|
|
474 | (2) |
|
|
476 | (8) |
|
Construction of Brownian Motion |
|
|
477 | (4) |
|
Non-Differentiability of Brownian Paths |
|
|
481 | (1) |
|
Variation of Brownian Paths |
|
|
482 | (1) |
|
Brownian Motion as a Martingale |
|
|
483 | (1) |
|
18.8 Stochastic Integration |
|
|
484 | (4) |
|
The Ito Integral of a Step Process |
|
|
484 | (2) |
|
|
486 | (1) |
|
The Ito Integral as a Martingale |
|
|
487 | (1) |
|
18.9 An Application to Finance |
|
|
488 | (5) |
|
|
489 | (1) |
|
Self-Financing Portfolios |
|
|
489 | (1) |
|
|
490 | (1) |
|
The Black-Scholes Option Price |
|
|
490 | (3) |
IV Appendices |
|
493 | (12) |
|
A Change of Variables Theorem |
|
|
495 | (6) |
|
B Separate and Joint Continuity |
|
|
501 | (4) |
References |
|
505 | (4) |
List of Symbols |
|
509 | (2) |
Index |
|
511 | |