Muutke küpsiste eelistusi

Principles Of Astrophotonics [Kõva köide]

(Macquarie University, Australia), (The University Of Sydney, Australia), (The University Of Sydney, Australia)
  • Formaat: Hardback, 284 pages
  • Sari: Advanced Textbooks in Physics
  • Ilmumisaeg: 18-Apr-2023
  • Kirjastus: World Scientific Europe Ltd
  • ISBN-10: 1800613253
  • ISBN-13: 9781800613256
  • Formaat: Hardback, 284 pages
  • Sari: Advanced Textbooks in Physics
  • Ilmumisaeg: 18-Apr-2023
  • Kirjastus: World Scientific Europe Ltd
  • ISBN-10: 1800613253
  • ISBN-13: 9781800613256
Astrophotonics is the application of photonics to astronomical instrumentation. It is a rapidly developing field that takes a new approach to instrumentation, in which the bulk optics of traditional instruments, such as lenses, mirrors, and diffraction gratings, are replaced with devices embedded within waveguides. This enables instruments that are smaller, modular, more stable, and most excitingly, with optical capabilities not possible with traditional instruments.Astrophotonics has reached a stage of development where many prototype devices are now being tested on sky, and the first fully-fledged instruments incorporating photonic devices are now being used for observations. The field is thus transitioning from one of instrumental research and development to mainstream observational astrophysics.This is the first book focussed on astrophotonics, written by three experts in the field. Beginning with a sound introduction to the basic principles of astrophotonics, it is intended to communicate the current status, potential, and future possibilities of astrophotonics to the wider astronomical, optics and photonics communities.
Preface vii
About the Authors xiii
Acknowledgements xv
Part I Concepts of Astronomical Instrumentation and Photonics
1(148)
1 Introduction
3(10)
1.1 Photonics
6(1)
1.2 Astrophotonics
7(1)
1.3 Scope of the Book
8(5)
2 Astronomical Optics
13(18)
2.1 The Seeing
13(2)
2.2 Astronomical Telescopes
15(6)
2.2.1 Telescope foci
15(2)
2.2.2 Collecting area
17(1)
2.2.3 Focal ratio
18(1)
2.2.4 Plate-scale
18(3)
2.3 Re-Imagers
21(3)
2.4 Conservation of Etendue
24(1)
2.5 Adaptive Optics
25(2)
2.6 Detectors
27(4)
2.6.1 Charge-coupled devices (CCDs) and CMOS detectors
27(2)
2.6.2 Fast read-out devices
29(1)
2.6.3 Near-infrared detectors
30(1)
3 Astronomical Instruments
31(36)
3.1 Astronomical Measurements
31(4)
3.1.1 Signal-to-noise
32(3)
3.2 Imagers
35(8)
3.2.1 Scientific applications
35(6)
3.2.2 Instrumentation and requirements
41(2)
3.3 Spectrographs
43(13)
3.3.1 Scientific applications
43(1)
3.3.2 Instrumentation and requirements
43(7)
3.3.3 Multi-object spectroscopy (MOS)
50(2)
3.3.4 Integral field spectroscopy (IFS)
52(4)
3.4 Polarimeters
56(2)
3.5 Interferometers
58(9)
3.5.1 Aperture separation and size
61(3)
3.5.2 Beam transport, optical path length matching and delay lines
64(1)
3.5.3 Beam combination
64(1)
3.5.4 Photometric calibration
65(1)
3.5.5 Bandwidth
65(1)
3.5.6 Aperture masking
65(2)
4 Propagation of Light in Waveguides
67(16)
4.1 Optical Waveguides
67(3)
4.2 Waveguide Modes
70(13)
4.2.1 The origin of waveguide modes
70(4)
4.2.2 The electromagnetic field distribution of modes
74(1)
4.2.3 Properties of modes
75(2)
4.2.4 Dispersion
77(3)
4.2.5 Focal ratio degradation
80(3)
5 Waveguides in Practice
83(22)
5.1 Step-Index Fibres
83(5)
5.1.1 Fibre materials
83(1)
5.1.2 Modes of a step-index fibre
84(4)
5.2 Graded Index Fibres
88(2)
5.3 Fibre Bragg Gratings
90(4)
5.4 Channel Waveguides
94(4)
5.4.1 Modes of rectangular waveguides
95(3)
5.5 Direct-Write Waveguides
98(1)
5.6 Photonic Crystal Waveguides
99(6)
5.6.1 Photonic crystal fibres
99(3)
5.6.2 Photonic bandgap waveguides
102(3)
6 Coupling Light into Waveguides
105(44)
6.1 Coupling into a Waveguide
105(2)
6.2 Coupling from a Telescope to a Waveguide: General Schemes
107(14)
6.2.1 Coupling in the image plane and the pupil plane
107(2)
6.2.2 Coupling efficiency
109(12)
6.3 Coupling to Single-Mode Photonics
121(7)
6.3.1 Adaptive optics
122(2)
6.3.2 The photonic lantern
124(4)
6.4 Coupling from Waveguides into Astronomical Instruments
128(11)
6.4.1 Coupling from a fibre into a spectrograph
129(3)
6.4.2 Single-mode fibre
132(2)
6.4.3 Spectrograph design
134(1)
6.4.4 Coupling into channel waveguides
135(2)
6.4.5 Grating couplers
137(2)
6.5 Coupling between Waveguides
139(6)
6.5.1 Y branch splitters and beam combiners
140(1)
6.5.2 Coupling between waveguides
141(4)
6.6 Photonic Lanterns
145(4)
Part II Astrophotonic Devices
149(64)
7 Interferometry
151(8)
7.1 Fibre Combiners
151(3)
7.1.1 Spatial filtering
152(2)
7.2 Integrated Photonic Beam Combiners
154(3)
7.3 Aperture Masking Interferometry
157(2)
8 OH Suppression
159(28)
8.1 The Idea of OH Suppression
159(3)
8.2 OH Suppression with Fibre Bragg Gratings
162(6)
8.2.1 FBGs for OH suppression
163(3)
8.2.2 Implementing FBGs in an astronomical instrument
166(2)
8.3 Current and Future Developments in Bragg Gratings for OH Suppression
168(8)
8.3.1 Multicore fibre Bragg gratings
169(1)
8.3.2 Direct-write waveguide Bragg gratings
170(3)
8.3.3 Direct-write into fibres
173(1)
8.3.4 Channel waveguide Bragg gratings
174(2)
8.4 Ring Resonators
176(11)
8.4.1 Requirements for OH suppression
179(8)
9 Photonic Spectrographs
187(16)
9.1 Micro-Spectrographs
188(2)
9.2 Arrayed Waveguide Gratings
190(9)
9.2.1 Theory
192(5)
9.2.2 Development of AWGs for astronomy
197(2)
9.3 Photonic Echelle Gratings
199(1)
9.4 Lippmann Spectrograph
200(3)
10 Wavelength Calibration
203(10)
10.1 Stability
204(2)
10.2 Wavelength Sources
206(7)
Part III Future Astrophotonics
213(24)
11 Unexploited Photonics
215(10)
11.1 Unexploited Photonic Devices
217(8)
11.1.1 Microstructured fibres
217(1)
11.1.2 Phase control
218(6)
11.1.3 Polarisation
224(1)
12 The Future of Astrophotonics
225(12)
12.1 Multimode Photonics
225(1)
12.2 Fully Photonic Instruments
226(4)
12.3 Quantum Astrophotonics
230(5)
12.3.1 Quantum optics
230(1)
12.3.2 Quantum photonics
231(3)
12.3.3 Quantum future
234(1)
12.4 The Future of Astrophotonics
235(2)
Bibliography 237(16)
Index 253