Muutke küpsiste eelistusi

Principles of Electronic Materials and Devices 4th edition [Kõva köide]

  • Formaat: Hardback, 992 pages, kõrgus x laius x paksus: 262x196x46 mm, kaal: 1628 g, 915 Illustrations
  • Ilmumisaeg: 16-Jun-2017
  • Kirjastus: McGraw-Hill Inc.,US
  • ISBN-10: 0078028183
  • ISBN-13: 9780078028182
  • Formaat: Hardback, 992 pages, kõrgus x laius x paksus: 262x196x46 mm, kaal: 1628 g, 915 Illustrations
  • Ilmumisaeg: 16-Jun-2017
  • Kirjastus: McGraw-Hill Inc.,US
  • ISBN-10: 0078028183
  • ISBN-13: 9780078028182

Principles of Electronic Materials and Devices is one of the few books in the market that has a broad coverage of electronic materials that today's scientists and engineers need. The general treatment of the textbook and various proofs leverage at a semiquantitative level without going into detailed physics.

Preface xiii
Chapter 1 Elementary Materials Science Concepts 3(122)
1.1 Atomic Structure and Atomic Number
3(5)
1.2 Atomic Mass and Mole
8(1)
1.3 Bonding and Types of Solids
9(16)
1.3.1 Molecules and General Bonding Principles
9(2)
1.3.2 Covalently Bonded Solids: Diamond
11(2)
1.3.3 Metallic Bonding: Copper
13(1)
1.3.4 Ionically Bonded Solids: Salt
14(4)
1.3.5 Secondary Bonding
18(4)
1.3.6 Mixed Bonding
22(3)
1.4 Kinetic Molecular Theory
25(12)
1.4.1 Mean Kinetic Energy and Temperature
25(7)
1.4.2 Thermal Expansion
32(5)
1.5 Molecular Velocity and Energy Distribution
37(4)
1.6 Molecular Collisions and Vacuum Deposition
41(4)
1.7 Heat, Thermal Fluctuations, and Noise
45(5)
1.8 Thermally Activated Processes
50(5)
1.8.1 Arrhenius Rate Equation
50(2)
1.8.2 Atomic Diffusion and the Diffusion Coefficient
52(3)
1.9 The Crystalline State
55(14)
1.9.1 Types of Crystals
55(6)
1.9.2 Crystal Directions and Planes
61(5)
1.9.3 Allotropy and Carbon
66(3)
1.10 Crystalline Defects and Their Significance
69(13)
1.10.1 Point Defects: Vacancies and Impurities
69(4)
1.10.2 Line Defects: Edge and Screw Dislocations
73(4)
1.10.3 Planar Defects: Grain Boundaries
77(2)
1.10.4 Crystal Surfaces and Surface Properties
79(3)
1.10.5 Stoichiometry, Nonstoichiometry, and Defect Structures
82(1)
1.11 Single-Crystal Czochralski Growth
82(3)
1.12 Glasses and Amorphous Semiconductors
85(5)
1.12.1 Glasses and Amorphous Solids
85(3)
1.12.2 Crystalline and Amorphous Silicon
88(2)
1.13 Solid Solutions and Two-Phase Solids
90(12)
1.13.1 Isomorphous Solid Solutions: Isomorphous Alloys
90(1)
1.13.2 Phase Diagrams: Cu-Ni and Other Isomorphous Alloys
91(4)
1.13.3 Zone Refining and Pure Silicon Crystals
95(2)
1.13.4 Binary Eutectic Phase Diagrams and Pb-Sn Solders
97(5)
Additional Topics
102(5)
1.14 Bravais Lattices
102(3)
1.15 Gruneisen's Rule
105(2)
Defining Terms
107(4)
Questions and Problems
111(14)
Chapter 2 Electrical and Thermal Conduction in Solids: Mainly Classical Concepts 125(88)
2.1 Classical Theory: The Drude Model
126(8)
2.2 Temperature Dependence of Resistivity: Ideal Pure Metals
134(3)
2.3 Matthiessen's and Nordheim's Rules
137(15)
2.3.1 Matthiessen's Rule and the Temperature Coefficient of Resistivity (alpha)
137(8)
2.3.2 Solid Solutions and Nordheim's Rule
145(7)
2.4 Resistivity of Mixtures and Porous Materials
152(5)
2.4.1 Heterogeneous Mixtures
152(4)
2.4.2 Two-Phase Alloy (Ag-Ni) Resistivity and Electrical Contacts
156(1)
2.5 The Hall Effect and Hall Devices
157(5)
2.6 Thermal Conduction
162(5)
2.6.1 Thermal Conductivity
162(4)
2.6.2 Thermal Resistance
166(1)
2.7 Electrical Conductivity of Nonmetals
167(10)
2.7.1 Semiconductors
168(4)
2.7.2 Ionic Crystals and Glasses
172(5)
Additional Topics
177(19)
2.8 Skin Effect: HF Resistance of a Conductor
177(3)
2.9 AC Conductivity (sac
180(4)
2.10 Thin Metal Films
184(6)
2.10.1 Conduction in Thin Metal Films
184(1)
2.10.2 Resistivity of Thin Films
184(6)
2.11 Interconnects in Microelectronics
190(4)
2.12 Electromigration and Black's Equation
194(2)
Defining Terms
196(2)
Questions and Problems
198(15)
Chapter 3 Elementary Quantum Physics 213(100)
3.1 Photons
213(14)
3.1.1 Light as a Wave
213(3)
3.1.2 The Photoelectric Effect
216(5)
3.1.3 Compton Scattering
221(3)
3.1.4 Black Body Radiation
224(3)
3.2 The Electron as a Wave
227(8)
3.2.1 De Broglie Relationship
227(4)
3.2.2 Time-Independent Schrbdinger Equation
231(4)
3.3 Infinite Potential Well: A Confined Electron
235(6)
3.4 Heisenberg's Uncertainty Principle
241(3)
3.5 Confined Electron in a Finite Potential Energy Well
244(4)
3.6 Tunneling Phenomenon: Quantum Leak
248(6)
3.7 Potential Box: Three Quantum Numbers
254(3)
3.8 Hydrogenic Atom
257(21)
3.8.1 Electron Wavefunctions
257(5)
3.8.2 Quantized Electron Energy
262(4)
3.8.3 Orbital Angular Momentum and Space Quantization
266(5)
3.8.4 Electron Spin and Intrinsic Angular Momentum S
271(2)
3.8.5 Magnetic Dipole Moment of the Electron
273(4)
3.8.6 Total Angular Momentum J
277(1)
3.9 The Helium Atom and the Periodic Table
278(5)
3.9.1 He Atom and Pauli Exclusion Principle
278(3)
3.9.2 Hund's Rule
281(2)
3.10 Stimulated Emission and Lasers
283(9)
3.10.1 Stimulated Emission and Photon Amplification
283(4)
3.10.2 Helium-Neon Laser
287(3)
3.10.3 Laser Output Spectrum
290(2)
Additional Topics
292(2)
3.11 Optical Fiber Amplifiers
292(2)
Defining Terms
294(4)
Questions and Problems
298(15)
Chapter 4 Modern Theory of Solids 313(98)
4.1 Hydrogen Molecule: Molecular Orbital Theory of Bonding
313(6)
4.2 Band Theory of Solids
319(9)
4.2.1 Energy Band Formation
319(6)
4.2.2 Properties of Electrons in a Band
325(3)
4.3 Semiconductors
328(6)
4.4 Electron Effective Mass
334(2)
4.5 Density of States in an Energy Band
336(7)
4.6 Statistics: Collections of Particles
343(3)
4.6.1 Boltzmann Classical Statistics
343(1)
4.6.2 Fermi-Dirac Statistics
344(2)
4.7 Quantum Theory of Metals
346(6)
4.7.1 Free Electron Model
346(3)
4.7.2 Conduction in Metals
349(3)
4.8 Fermi Energy Significance
352(12)
4.8.1 Metal-Metal Contacts: Contact Potential
352(3)
4.8.2 The Seebeck Effect and the Thermocouple
355(9)
4.9 Thermionic Emission and Vacuum Tube Devices
364(10)
4.9.1 Thermionic Emission: Richardson-Dushman Equation
364(4)
4.9.2 Schottky Effect and Field Emission
368(6)
4.10 Phonons
374(14)
4.10.1 Harmonic Oscillator and Lattice Waves
374(5)
4.10.2 Debye Heat Capacity
379(5)
4.10.3 Thermal Conductivity of Nonmetals
384(3)
4.10.4 Electrical Conductivity
387(1)
Additional Topics
388(9)
4.11 Band Theory of Metals: Electron Diffraction in Crystals
388(9)
Defining Terms
397(2)
Questions and Problems
399(12)
Chapter 5 Semiconductors 411(116)
5.1 Intrinsic Semiconductors
412(14)
5.1.1 Silicon Crystal and Energy Band Diagram
412(1)
5.1.2 Electrons and Holes
413(3)
5.1.3 Conduction in Semiconductors
416(2)
5.1.4 Electron and Hole Concentrations
418(8)
5.2 Extrinsic Semiconductors
426(9)
5.2.1 n-Type Doping
427(2)
5.2.2 p-Type Doping
429(1)
5.2.3 Compensation Doping
430(5)
5.3 Temperature Dependence of Conductivity
435(12)
5.3.1 Carrier Concentration Temperature Dependence
435(5)
5.3.2 Drift Mobility: Temperature and Impurity Dependence
440(3)
5.3.3 Conductivity Temperature Dependence
443(2)
5.3.4 Degenerate and Nondegenerate Semiconductors
445(2)
5.4 Direct and Indirect Recombination
447(4)
5.5 Minority Carrier Lifetime
451(6)
5.6 Diffusion and Conduction Equations, and Random Motion
457(6)
5.7 Continuity Equation
463(6)
5.7.1 Time-Dependent Continuity Equation
463(2)
5.7.2 Steady-State Continuity Equation
465(4)
5.8 Optical Absorption
469(4)
5.9 Piezoresistivity
473(4)
5.10 Schottky Junction
477(10)
5.10.1 Schottky Diode
477(5)
5.10.2 Schottky Junction Solar Cell and Photodiode
482(5)
5.11 Ohmic Contacts and Thermoelectric Coolers
487(5)
Additional Topics
492(16)
5.12 Seebeck Effect in Semiconductors and Voltage Drift
492(3)
5.13 Direct and Indirect Bandgap Semiconductors
495(10)
5.14 Indirect Recombination
505(1)
5.15 Amorphous Semiconductors
505(3)
Defining Terms
508(3)
Questions and Problems
511(16)
Chapter 6 Semiconductor Devices 527(132)
6.1 Ideal pn Junction
528(13)
6.1.1 No Applied Bias: Open Circuit
528(5)
6.1.2 Forward Bias: Diffusion Current
533(6)
6.1.3 Forward Bias: Recombination and Total Current
539(2)
6.1.4 Reverse Bias
541(12)
6.2 pn Junction Band Diagram
548(1)
6.2.1 Open Circuit
548(2)
6.2.2 Forward and Reverse Bias
550(3)
6.3 Depletion Layer Capacitance of the pn Junction
553(6)
6.4 Diffusion (Storage) Capacitance and Dynamic Resistance
559(3)
6.5 Reverse Breakdown: Avalanche and Zener Breakdown
562(4)
6.5.1 Avalanche Breakdown
562(2)
6.5.2 Zener Breakdown
564(2)
6.6 Light Emitting Diodes (LED)
566(6)
6.6.1 LED Principles
566(2)
6.6.2 Heterojunction High-Intensity LEDs
568(1)
6.6.3 Quantum Well High Intensity LEDs
569(3)
6.7 Led Materials and Structures
572(4)
6.8 Led Output Spectrum
576(6)
6.9 Brightness and Efficiency of LEDs
582(4)
6.10 Solar Cells
586(12)
6.10.1 Photovoltaic Device Principles
586(7)
6.10.2 Series and Shunt Resistance
593(2)
6.10.3 Solar Cell Materials, Devices, and Efficiencies
595(3)
6.11 Bipolar Transistor (BJT)
598(16)
6.11.1 Common Base (CB) DC Characteristics
598(9)
6.11.2 Common Base Amplifier
607(2)
6.11.3 Common Emitter (CE) DC Characteristics
609(2)
6.11.4 Low-Frequency Small-Signal Model
611(3)
6.12 Junction Field Effect Transistor (JFET)
614(10)
6.12.1 General Principles
614(6)
6.12.2 JFET Amplifier
620(4)
6.13 Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)
624(11)
6.13.1 Field Effect and Inversion
624(2)
6.13.2 Enhancement MOSFET
626(5)
6.13.3 Threshold Voltage
631(2)
6.13.4 Ion Implanted MOS Transistors and Poly-Si Gates
633(2)
Additional Topics
635(6)
6.14 pin Diodes, Photodiodes, and Solar Cells
635(3)
6.15 Semiconductor Optical Amplifiers and Lasers
638(3)
Defining Terms
641(4)
Questions and Problems
645(14)
Chapter 7 Dielectric Materials and Insulation 659(108)
7.1 Matter Polarization and Relative Permittivity
660(11)
7.1.1 Relative Permittivity: Definition
660(1)
7.1.2 Dipole Moment and Electronic Polarization
661(4)
7.1.3 Polarization Vector P
665(4)
7.1.4 Local Field Eloc and Clausius-Mossotti Equation
669(2)
7.2 Electronic Polarization: Covalent Solids
671(2)
7.3 Polarization Mechanisms
673(6)
7.3.1 Ionic Polarization
673(1)
7.3.2 Orientational (Dipolar) Polarization
674(2)
7.3.3 Interfacial Polarization
676(2)
7.3.4 Total Polarization
678(1)
7.4 Frequency Dependence: Dielectric Constant and Dielectric Loss
679(12)
7.4.1 Dielectric Loss
679(9)
7.4.2 Debye Equations, Cole-Cole Plots, and Equivalent Series Circuit
688(3)
7.5 Gauss's Law and Boundary Conditions
691(5)
7.6 Dielectric Strength and Insulation Breakdown
696(14)
7.6.1 Dielectric Strength: Definition
696(1)
7.6.2 Dielectric Breakdown and Partial Discharges: Gases
697(3)
7.6.3 Dielectric Breakdown: Liquids
700(1)
7.6.4 Dielectric Breakdown: Solids
701(9)
7.7 Capacitor Dielectric Materials
710(9)
7.7.1 Typical Capacitor Constructions
710(5)
7.7.2 Dielectrics: Comparison
715(4)
7.8 Piezoelectricity, Ferroelectricity, and Pyroelectricity
719(15)
7.8.1 Piezoelectricity
719(5)
7.8.2 Piezoelectricity: Quartz Oscillators and Filters
724(3)
7.8.3 Ferroelectric and Pyroelectric Crystals
727(7)
Additional Topics
734(16)
7.9 Electric Displacement and Depolarization Field
734(4)
7.10 Local Field and the Lorentz Equation
738(2)
7.11 Dipolar Polarization
740(2)
7.12 Ionic Polarization and Dielectric Resonance
742(5)
7.13 Dielectric Mixtures and Heterogeneous Media
747(3)
Defining Terms
750(3)
Questions and Problems
753(14)
Chapter 8 Magnetic Properties and Superconductivity 767(92)
8.1 Magnetization of Matter
768(10)
8.1.1 Magnetic Dipole Moment
768(1)
8.1.2 Atomic Magnetic Moments
769(1)
8.1.3 Magnetization Vector M
770(3)
8.1.4 Magnetizing Field or Magnetic Field Intensity H
773(1)
8.1.5 Magnetic Permeability and Magnetic Susceptibility
774(4)
8.2 Magnetic Material Classifications
778(4)
8.2.1 Diamagnetism
778(2)
8.2.2 Paramagnetism
780(1)
8.2.3 Ferromagnetism
781(1)
8.2.4 Antiferromagnetism
781(1)
8.2.5 Ferrimagnetism
782(1)
8.3 Ferromagnetism Origin and the Exchange Interaction
782(3)
8.4 Saturation Magnetization and Curie Temperature
785(2)
8.5 Magnetic Domains: Ferromagnetic Materials
787(14)
8.5.1 Magnetic Domains
787(2)
8.5.2 Magnetocrystalline Anisotropy
789(1)
8.5.3 Domain Walls
790(3)
8.5.4 Magnetostriction
793(1)
8.5.5 Domain Wall Motion
794(1)
8.5.6 Polycrystalline Materials and the M versus H Behavior
795(4)
8.5.7 Demagnetization
799(2)
8.6 Soft and Hard Magnetic Materials
801(2)
8.6.1 Definitions
801(1)
8.6.2 Initial and Maximum Permeability
802(1)
8.7 Soft Magnetic Materials: Examples and Uses
803(3)
8.8 Hard Magnetic Materials: Examples and Uses
806(6)
8.9 Energy Band Diagrams and Magnetism
812(3)
8.9.1 Pauli Spin Paramagnetism
812(2)
8.9.2 Energy Band Model of Ferromagnetism
814(1)
8.10 Anisotropic and Giant Magnetoresistance
815(5)
8.11 Magnetic Recording Materials
820(9)
8.11.1 General Principles of Magnetic Recording
820(5)
8.11.2 Materials for Magnetic Storage
825(4)
8.12 Superconductivity
829(9)
8.12.1 Zero Resistance and the Meissner Effect
829(3)
8.12.2 Type I and Type II Superconductors
832(2)
8.12.3 Critical Current Density
834(4)
8.13 Superconductivity Origin
838(2)
Additional Topics
840(3)
8.14 Josephson Effect
840(2)
8.15 Flux Quantization
842(1)
Defining Terms
843(4)
Questions and Problems
847(12)
Chapter 9 Optical Properties of Materials 859(82)
9.1 Light Waves in a Homogeneous Medium
860(3)
9.2 Refractive Index
863(2)
9.3 Dispersion: Refractive Index-Wavelength Behavior
865(5)
9.4 Group Velocity and Group Index
870(3)
9.5 Magnetic Field: Irradiance and Poynting Vector
873(2)
9.6 Snell's Law and Total Internal Reflection (TIR)
875(4)
9.7 Fresnel's Equations
879(11)
9.7.1 Amplitude Reflection and Transmission Coefficients
879(6)
9.7.2 Intensity, Reflectance, and Transmittance
885(5)
9.8 Complex Refractive Index and Light Absorption
890(8)
9.9 Lattice Absorption
898(2)
9.10 Band-To-Band Absorption
900(3)
9.11 Light Scattering in Materials
903(1)
9.12 Attenuation in Optical Fibers
904(3)
9.13 Luminescence, Phosphors, and White LEDs
907(5)
9.14 Polarization
912(2)
9.15 Optical Anisotropy
914(6)
9.15.1 Uniaxial Crystals and Fresnel's Optical Indicatrix
915(4)
9.15.2 Birefringence of Calcite
919(1)
9.15.3 Dichroism
920(1)
9.16 Birefringent Retarding Plates
920(2)
9.17 Optical Activity and Circular Birefringence
922(2)
9.18 Liquid Crystal Displays (LCDs)
924(4)
9.19 Electro-Optic Effects
928(4)
Defining Terms
932(3)
Questions and Problems
935(6)
Appendix A Bragg's Diffraction Law and X-ray Diffraction 941(6)
Appendix B Major Symbols and Abbreviations 947(8)
Appendix C Elements to Uranium 955(4)
Appendix D Constants and Useful Information 959(2)
Index 961(17)
Periodic Table 978