Preface |
|
xv | |
Acknowledgments |
|
xvii | |
Acronyms |
|
xix | |
Nomenclature |
|
xxi | |
1 Evolution of Fire Science |
|
1 | (32) |
|
|
1 | (1) |
|
|
1 | (2) |
|
|
3 | (1) |
|
1.3 Natural Causes of Fire |
|
|
4 | (5) |
|
|
4 | (1) |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.5 Fire in the United States and Abroad |
|
|
10 | (10) |
|
|
10 | (3) |
|
1.5.2 United States and the World |
|
|
13 | (1) |
|
1.5.3 U.S. Fire Prevention Infrastructure |
|
|
13 | (2) |
|
1.5.4 Motivation for Improvement |
|
|
15 | (1) |
|
|
15 | (2) |
|
|
17 | (3) |
|
|
20 | (3) |
|
1.6.1 Disciplines That Underlie Fire |
|
|
20 | (1) |
|
1.6.2 Computer Simulations and Physics |
|
|
20 | (1) |
|
1.6.3 Brief History of Fire Science |
|
|
21 | (2) |
|
1.7 Visualization of Fire Phenomena |
|
|
23 | (2) |
|
|
25 | (4) |
|
|
25 | (3) |
|
|
28 | (1) |
|
1.8.3 Scientific Notation |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
30 | (1) |
|
|
31 | (2) |
2 Combustion in Natural Fires |
|
33 | (40) |
|
|
33 | (1) |
|
|
33 | (1) |
|
2.2 Fire and Its Ingredients |
|
|
34 | (5) |
|
2.2.1 Typical Temperatures and Energy Levels to Achieve Combustion |
|
|
34 | (2) |
|
|
36 | (1) |
|
2.2.3 Fire Triangle and Tetrahedron |
|
|
36 | (1) |
|
2.2.4 Combustion Time and Extent |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
39 | (17) |
|
|
43 | (5) |
|
2.3.2 Anatomy of a Diffusion Flame |
|
|
48 | (6) |
|
2.3.3 Turbulent Diffusion Flames |
|
|
54 | (2) |
|
|
56 | (6) |
|
2.4.1 Laminar Flame Propagation |
|
|
57 | (2) |
|
|
59 | (2) |
|
2.4.3 Turbulent Propagation to Detonation |
|
|
61 | (1) |
|
|
62 | (2) |
|
2.6 Spontaneous Combustion |
|
|
64 | (5) |
|
|
69 | (1) |
|
|
70 | (1) |
|
|
70 | (1) |
|
|
70 | (1) |
|
|
71 | (2) |
3 Heat Transfer |
|
73 | (30) |
|
|
73 | (1) |
|
|
73 | (1) |
|
3.2 Definitions and Concepts |
|
|
74 | (3) |
|
3.3 Forms of Heat Transfer |
|
|
77 | (16) |
|
|
78 | (3) |
|
|
78 | (2) |
|
3.3.1.2 Thermal Penetration Time |
|
|
80 | (1) |
|
|
81 | (3) |
|
|
84 | (9) |
|
3.4 Heat Flux as an Indication of Damage |
|
|
93 | (1) |
|
3.5 Heat Flux Due to Smoke in Room Fires |
|
|
94 | (4) |
|
3.6 Heat Flux from Flames |
|
|
98 | (1) |
|
|
99 | (1) |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
100 | (1) |
|
|
101 | (2) |
4 Ignition |
|
103 | (32) |
|
|
103 | (1) |
|
|
103 | (1) |
|
4.2 Piloted Ignition and Autoignition |
|
|
104 | (1) |
|
4.3 Evaporation in Liquids |
|
|
104 | (2) |
|
|
106 | (4) |
|
|
107 | (1) |
|
|
108 | (2) |
|
|
110 | (4) |
|
4.5.1 Ignition of Wood as an Example |
|
|
111 | (1) |
|
4.5.2 Ignition Temperature and Critical Heat Flux |
|
|
112 | (2) |
|
4.6 Time for Flaming Ignition |
|
|
114 | (2) |
|
4.7 Predicting the Ignition Time for Solid Fuels |
|
|
116 | (8) |
|
4.7.1 Ignition of Thin Objects |
|
|
117 | (2) |
|
4.7.2 Ignition of Thick Materials |
|
|
119 | (5) |
|
4.8 Solid Properties for Piloted Ignition |
|
|
124 | (7) |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
132 | (1) |
|
|
133 | (1) |
|
|
133 | (2) |
5 Flame Spread |
|
135 | (30) |
|
|
135 | (1) |
|
|
135 | (1) |
|
|
136 | (2) |
|
5.3 General Flame Spread Theory |
|
|
138 | (2) |
|
5.4 Spread on Solid Surfaces |
|
|
140 | (7) |
|
5.4.1 Effect of Thickness |
|
|
141 | (1) |
|
5.4.2 Downward or Lateral Wall Spread on a Thick Material |
|
|
142 | (3) |
|
5.4.3 Upward or Wind-Aided Spread on a Thick Material |
|
|
145 | (2) |
|
5.5 Spread through Porous Solid Arrays |
|
|
147 | (4) |
|
|
151 | (4) |
|
5.7 Spread through a Dwelling |
|
|
155 | (2) |
|
5.8 Typical Fire Spread Rates |
|
|
157 | (1) |
|
5.9 Standard Test Methods |
|
|
157 | (1) |
|
5.10 Case Study: Fire Spread in a School Gymnasium |
|
|
158 | (2) |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
162 | (3) |
6 Burning Rate |
|
165 | (48) |
|
|
165 | (1) |
|
|
165 | (1) |
|
6.2 Definitions and Theory |
|
|
165 | (8) |
|
|
167 | (1) |
|
6.2.2 Heat of Gasification, L (kJ/g) |
|
|
168 | (1) |
|
6.2.3 Approximate Formula for Steady Burning |
|
|
169 | (1) |
|
6.2.4 Computing the Mass Burning Flux |
|
|
170 | (1) |
|
|
171 | (1) |
|
6.2.6 Difficulties in Computing Burning Rates |
|
|
172 | (1) |
|
6.2.7 Material Property Values for the Heat of Gasification |
|
|
173 | (1) |
|
6.3 Estimating Burning Mass Flux |
|
|
173 | (7) |
|
6.3.1 Example for a Burning Wall |
|
|
175 | (1) |
|
|
176 | (2) |
|
6.3.3 Maximum Burning Rates |
|
|
178 | (2) |
|
6.4 Energy Release Rate, Q |
|
|
180 | (4) |
|
6.4.1 Heat of Combustion, ΔHc |
|
|
180 | (1) |
|
6.4.2 Heat of Combustion of Wood |
|
|
181 | (1) |
|
6.4.3 Heats of Combustion of Materials |
|
|
182 | (1) |
|
6.4.4 Heat Release Parameter |
|
|
182 | (2) |
|
6.5 Estimating Energy Release Rate |
|
|
184 | (3) |
|
6.6 Experimental Firepower (HRR) Results for Selected Items |
|
|
187 | (5) |
|
|
192 | (14) |
|
6.7.1 NFPA Design Categories |
|
|
201 | (2) |
|
6.7.2 Fire HRR of Item Constructed |
|
|
203 | (3) |
|
6.8 Vehicle Fire Behavior |
|
|
206 | (1) |
|
|
207 | (2) |
|
|
209 | (1) |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
210 | (1) |
|
|
211 | (2) |
7 Fire Plumes |
|
213 | (30) |
|
|
213 | (1) |
|
|
213 | (1) |
|
7.2 Buoyancy and Fluid Dynamics |
|
|
214 | (4) |
|
7.3 Turbulent Fire Plumes and Jets |
|
|
218 | (1) |
|
|
219 | (2) |
|
|
221 | (8) |
|
|
222 | (2) |
|
|
224 | (5) |
|
7.6 Fire Plume Temperatures |
|
|
229 | (7) |
|
7.6.1 Analyses to Predict the Plume Temperature |
|
|
230 | (2) |
|
7.6.2 Flame Height and Temperature Calculations |
|
|
232 | (2) |
|
7.6.3 Nature of Turbulent Flame Temperature |
|
|
234 | (2) |
|
7.7 Flame Lengths for Other Configurations |
|
|
236 | (1) |
|
|
237 | (2) |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
240 | (1) |
|
|
241 | (2) |
8 Combustion Products |
|
243 | (24) |
|
|
243 | (1) |
|
|
243 | (1) |
|
8.2 Scope of Combustion Products |
|
|
244 | (2) |
|
|
246 | (5) |
|
|
251 | (3) |
|
|
254 | (9) |
|
|
254 | (2) |
|
8.5.2 Additive Fractional Incapacitation Doses |
|
|
256 | (1) |
|
|
257 | (1) |
|
|
258 | (3) |
|
|
261 | (2) |
|
|
263 | (1) |
|
|
263 | (1) |
|
|
264 | (1) |
|
|
264 | (1) |
|
|
265 | (2) |
9 Compartment Fires |
|
267 | (52) |
|
|
267 | (1) |
|
|
267 | (1) |
|
9.2 Stages of Fire Development |
|
|
268 | (5) |
|
|
269 | (1) |
|
|
270 | (1) |
|
|
270 | (2) |
|
|
272 | (1) |
|
9.2.5 Example of Measured Conditions in Room Fire |
|
|
272 | (1) |
|
|
273 | (3) |
|
9.3.1 Duct Fan Pressures in Fire |
|
|
274 | (2) |
|
9.3.2 Pressure Level Due to Fire |
|
|
276 | (1) |
|
9.4 Compartment Flow Dynamics |
|
|
276 | (10) |
|
|
276 | (3) |
|
9.4.2 Smoke Filling in a Leaky Compartment |
|
|
279 | (2) |
|
9.4.3 Smoke Movement in a Building |
|
|
281 | (5) |
|
|
282 | (2) |
|
|
284 | (2) |
|
9.5 Single Room Fire Analyses |
|
|
286 | (22) |
|
|
287 | (1) |
|
9.5.2 Smoldering Fire in a Closed Space |
|
|
288 | (3) |
|
|
291 | (4) |
|
|
295 | (2) |
|
|
297 | (1) |
|
9.5.6 Ventilation-Limited Fires |
|
|
298 | (2) |
|
9.5.7 Fully Developed Fire Size |
|
|
300 | (15) |
|
9.5.7.1 Model for Fuel Generation in a Compartment |
|
|
302 | (1) |
|
9.5.7.2 Fully Developed Compartment Fire Behavior |
|
|
303 | (4) |
|
9.5.7.3 Fuel Load and Burning Duration |
|
|
307 | (1) |
|
9.6 Anatomy of Fire Growth |
|
|
308 | (6) |
|
|
314 | (1) |
|
|
315 | (1) |
|
|
316 | (1) |
|
|
316 | (1) |
|
|
317 | (2) |
10 Design, Investigation, and Case Studies |
|
319 | (56) |
|
|
319 | (1) |
|
|
319 | (1) |
|
|
320 | (8) |
|
10.2.1 Examples in Design |
|
|
323 | (4) |
|
10.2.1.1 Example 1: Effect of Shaft Vents in a Building Fire |
|
|
323 | (2) |
|
10.2.1.2 Example 2: Smoke Movement in the World Trade Center, New York, New York |
|
|
325 | (2) |
|
|
327 | (1) |
|
|
328 | (38) |
|
|
329 | (1) |
|
10.3.2 Example 3: The Case of the Laundry Basket Fire |
|
|
330 | (2) |
|
10.3.3 Example 4: An Analysis of the Waldbaum Fire, Brooklyn, New York (August 3, 1978) |
|
|
332 | (8) |
|
10.3.3.1 Early Dawn: Ignition (Approximately 6 a.m.) |
|
|
334 | (2) |
|
10.3.3.2 Smoldering Stage |
|
|
336 | (1) |
|
10.3.3.3 Onset of Flaming: Shortly before 8:30 a.m. |
|
|
337 | (1) |
|
10.3.3.4 Fire Growth in the Cockloft |
|
|
338 | (1) |
|
10.3.3.5 Collapse of the Roof due to Truss Member Failure — 9:15 a.m. |
|
|
339 | (1) |
|
10.3.3.6 Concluding Remarks |
|
|
339 | (1) |
|
10.3.4 Example 5: The Branch Davidian Fire near Waco, Texas (April 19,1993) |
|
|
340 | (14) |
|
10.3.4.1 Congressional Committee Statement on the Mount Carmel Branch Davidian Fire (April 19, 1995) |
|
|
342 | (9) |
|
10.3.4.2 Follow-Up to Waco |
|
|
351 | (1) |
|
10.3.4.3 Scientific Analyses of Some Aspects of the Waco Fire |
|
|
351 | (3) |
|
|
354 | (5) |
|
|
355 | (1) |
|
10.3.5.2 Clean Burn Pattern |
|
|
356 | (1) |
|
10.3.5.3 The Hands of Time in a Fire |
|
|
357 | (1) |
|
10.3.5.4 Gasoline versus Fire Damage |
|
|
357 | (2) |
|
10.3.6 World Trade Center Terrorism and Fire (9/11) |
|
|
359 | (7) |
|
10.3.6.1 Investigative Efforts |
|
|
360 | (2) |
|
10.3.6.2 Role of the Jet Fuel |
|
|
362 | (1) |
|
10.3.6.3 Fuel Load for the Fire |
|
|
362 | (1) |
|
10.3.6.4 Fire Effect on the Structure |
|
|
363 | (2) |
|
10.3.6.5 Afterthoughts on WTC |
|
|
365 | (1) |
|
10.4 Computer Fire Models |
|
|
366 | (4) |
|
|
366 | (3) |
|
|
369 | (1) |
|
|
370 | (1) |
|
|
371 | (1) |
|
|
371 | (1) |
|
|
372 | (3) |
Appendix: Mathematics of Science |
|
375 | (22) |
Glossary |
|
397 | (8) |
Index |
|
405 | |