Muutke küpsiste eelistusi

Principles of Semiconductor Devices [Kõva köide]

Teised raamatud teemal:
  • Kõva köide
  • Hind: 150,61 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
Teised raamatud teemal:
Quantum mechanical phenomena-including energy bands, energy gaps, holes, and effective mass-constitute the majority of properties unique to semiconductor materials. Understanding how these properties affect the electrical characteristics of semiconductors is vital for engineers working with today's nanoscale devices.

Designed for upper-level undergraduate and graduate courses, Principles of Semiconductor Devices covers the dominant practical applications of semiconductor device theory and applies quantum mechanical concepts and equations to develop the energy-band model. The text presents quantum mechanics through examples related to the energy-band model, providing students with a deeper understanding of the energy-band diagrams used to explain semiconductor device operation. The semiconductor theory is directly linked to the electronic layout and design of integrated circuits.

The author has divided the text into four parts. Part I explains semiconductor physics, and Part II presents the principles of operation and modeling of the fundamental junctions and transistors. Part III discusses the diode, MOSFET, and BJT topics that are needed for circuit design. Part IV introduces photonic devices, microwave FETs, negative-resistance diodes, and power devices. The chapters and the sections in each chapter are organized hierarchically. Core material is presented first, followed by advanced topics, allowing instructors to select more rigorous, design-related topics as they see fit.
Preface xiii
PART I INTRODUCTION TO SEMICONDUCTORS
Semiconductor Crystals: The Atomic-Bond Model
3(28)
Crystal Lattices
4(8)
Unit Cell
4(3)
Planes and Directions
7(3)
Atomic Bonds
10(2)
Current Carriers
12(9)
Two Types of Current Carriers in Semiconductors
13(2)
N-Type and P-Type Doping
15(2)
Electroneutrality Equation
17(1)
Electron and Hole Generation and Recombination in Thermal Equilibrium
18(3)
Basics of Crystal Growth and Doping Techniques
21(10)
Crystal-Growth Techniques
21(3)
Doping Techniques
24(2)
Summary
26(2)
Problems
28(2)
Review Questions
30(1)
Quantum Mechanics and the Energy-Band Model
31(66)
Electrons as Waves
32(13)
De Broglie Relationship Between Particle and Wave Properties
32(1)
Wave Function and Wave Packet
33(5)
Schrodinger Equation
38(7)
Energy Levels in Atoms and Energy Bands in Crystals
45(9)
Atomic Structure
45(2)
Energy Bands in Metals
47(2)
Energy Gap and Energy Bands in Semiconductors and Insulators
49(5)
Electrons and Holes as Particles
54(12)
Effective Mass and Real E--k Diagrams
54(4)
The Question of Electron Size: The Uncertainty Principle
58(4)
Density of Electron States
62(4)
Population of Electron States: Concentrations of Electrons and Holes
66(31)
Fermi--Dirac Distribution
67(5)
Maxwell--Boltzmann Approximation and Effective Density of States
72(6)
Fermi Potential and Doping
78(7)
Nonequilibrium Carrier Concentrations and Quasi-Fermi Levels
85(2)
Summary
87(3)
Problems
90(4)
Review Questions
94(3)
Drift
97(33)
Energy Bands with Applied Electric Field
97(3)
Energy-Band Presentation of Drift Current
98(2)
Resistance and Power Dissipation due to Carrier Scattering
100(1)
Ohm's Law, Sheet Resistance, and Conductivity
100(12)
Designing Integrated-Circuit Resistors
101(6)
Differential Form of Ohm's Law
107(3)
Conductivity Ingredients
110(2)
Carrier Mobility
112(18)
Thermal and Drift Velocities
112(3)
Mobility Definition
115(1)
Scattering Time and Scattering Cross Section
116(2)
Mathieson's Rule
118(5)
Hall Effect
123(2)
Summary
125(1)
Problems
126(3)
Review Questions
129(1)
Diffusion
130(18)
Diffusion-Current Equation
130(3)
Diffusion Coefficient
133(6)
Einstein Relationship
133(3)
Haynes--Shockley Experiment
136(2)
Arrhenius Equation
138(1)
Basic Continuity Equation
139(9)
Summary
144(1)
Problems
145(1)
Review Questions
146(2)
Generation and Recombination
148(39)
Generation and Recombination Mechanisms
148(3)
General Form of the Continuity Equation
151(6)
Recombination and Generation Rates
151(2)
Minority-Carrier Lifetime
153(3)
Diffusion Length
156(1)
Generation and Recombination Physics and Shockley--Read--Hall (SRH) Theory
157(30)
Capture and Emission Rates in Thermal Equilibrium
158(3)
Steady-State Equation for the Effective Thermal Generation--Recombination Rate
161(6)
Special Cases
167(7)
Surface Generation and Recombination
174(4)
Summary
178(2)
Problems
180(2)
Review Questions
182(5)
PART II FUNDAMENTAL DEVICE STRUCTURES
P--N Junction
187(55)
P--N Junction Principles
187(12)
P--N Junction in Thermal Equilibrium: Built-in Voltage
187(4)
Reverse-Biased P--N Junction
191(2)
Forward-Biased P--N Junction
193(2)
Breakdown Phenomena
195(4)
DC Model
199(14)
Basic Current--Voltage (I--V) Equation
199(8)
Important Second-Order Effects
207(4)
Temperature Effects
211(2)
Capacitance of Reverse-Biased P--N Junction
213(15)
C--V Dependence
214(1)
Depletion-Layer Width: Solving the Poisson Equation
215(13)
SPICE Model for the Depletion-Layer Capacitance
228(1)
Stored-Charge Effects
228(14)
Stored Charge and Transit Time
228(1)
Relationship Between the Transit Time and the Minority-Carrier Lifetime
229(1)
Switching Characteristics: Reverse-Recovery Time
230(2)
Summary
232(3)
Problems
235(5)
Review Questions
240(2)
Metal--Semiconductor Contact and MOS Capacitor
242(44)
Metal--Semiconductor Contact
243(9)
Schottky Diode: Rectifying Metal--Semiconductor Contact
243(8)
Ohmic Metal-Semiconductor Contacts
251(1)
MOS Capacitor
252(34)
Properties of the Gate Oxide and the Oxide-Semiconductor Interface
253(4)
C--V Curve and the Surface-Potential Dependence on Gate Voltage
257(8)
Energy-Band Diagrams
265(11)
Flat-Band Capacitance and Debye Length
276(3)
Summary
279(1)
Problems
280(4)
Review Questions
284(2)
MOSFET
286(61)
MOSFET Principles
286(16)
MOSFET Structure
286(3)
MOSFET as a Voltage-Controlled Switch
289(5)
The Threshold Voltage and the Body Effect
294(4)
MOSFET as a Voltage-Controlled Current Source: Mechanisms of Current Saturation
298(4)
Principal Current--Voltage Characteristics and Equations
302(10)
Spice Level 1 Model
303(3)
Spice Level 2 Model
306(2)
Spice Level 3 Model: Principal Effects
308(4)
Second-Order Effects
312(8)
Mobility Reduction with Gate Voltage
312(1)
Velocity Saturation (Mobility Reduction with Drain Voltage)
313(1)
Finite Output Resistance
314(2)
Threshold-Voltage-Related Short-Channel Effects
316(2)
Threshold-Voltage-Related Narrow-Channel Effects
318(1)
Subthreshold Current
318(2)
Nanoscale MOSFETs
320(16)
Down-Scaling Benefits and Rules
321(2)
Leakage Currents
323(2)
Advanced MOSFETs
325(3)
Reliability Issues
328(8)
MOS-Based Memory Devices
336(11)
1C1T DRAM Cell
337(1)
Flash-Memory Cell
338(2)
Summary
340(2)
Problems
342(3)
Review Questions
345(2)
BJT
347(48)
BJT Principles
347(21)
BJT as a Voltage-Controlled Current Source
348(3)
BJT Currents and Gain Definitions
351(4)
Dependence of α and β Current Gains on Technological Parameters
355(5)
The Four Modes of Operation: BJT as a Switch
360(5)
Complementary BJT
365(1)
BJT Versus MOSFET
366(2)
Principal Current--Voltage Characteristics: Ebers--Moll Model in Spice
368(7)
Injection Version
368(1)
Transport Version
369(2)
Spice Version
371(4)
Second-Order Effects
375(8)
Early Effect: Finite Dynamic Output Resistance
375(3)
Parasitic Resistances
378(1)
Dependence of Common-Emitter Current Gain on Transistor Current: Low-Current Effects
379(1)
Dependence of Common-Emitter Current Gain on Transistor Current: Gummel--Poon Model for High-Current Effects
380(3)
Heterojunction Bipolar Transistor
383(12)
Summary
386(2)
Problems
388(3)
Review Questions
391(4)
PART III DEVICE TECHNOLOGY AND ELECTRONICS
Integrated-Circuit Technologies
395(47)
A Diode in IC Technology
395(10)
Basic Structure
395(1)
Lithography
396(2)
Process Sequence
398(2)
Diffusion Profiles
400(5)
MOSFET Technologies
405(18)
Local Oxidation of Silicon (LOCOS)
405(1)
NMOS Technology
406(8)
Basic CMOS Technology
414(8)
Silicon-on-Insulator (SOI) Technology
422(1)
Bipolar IC Technologies
423(19)
IC Structure of NPN BJT
423(2)
Standard Bipolar Technology Process
425(4)
Implementation of PNP BJTs, Resistors, Capacitors, and Diodes
429(4)
Layer Merging
433(3)
BiCMOS Technology
436(1)
Summary
437(1)
Problems
438(3)
Review Questions
441(1)
Device Electronics: Equivalent Circuits and Spice Parameters
442(57)
Diodes
443(12)
Static Model and Parameters in Spice
443(1)
Large-Signal Equivalent Circuit in Spice
444(2)
Parameter Measurement
446(6)
Small-Signal Equivalent Circuit
452(3)
MOSFET
455(23)
Static Model and Parameters: Level 3 in Spice
455(5)
Parameter Measurement
460(8)
Large-Signal Equivalent Circuit and Dynamic Parameters in Spice
468(2)
Simple Digital Model
470(6)
Small-Signal Equivalent Circuit
476(2)
BJT
478(21)
Static Model and Parameters: Ebers--Moll and Gummel--Poon Levels in Spice
478(2)
Parameter Measurement
480(5)
Large-Signal Equivalent Circuit and Dynamic Parameters in Spice
485(2)
Small-Signal Equivalent Circuit
487(2)
Parasitic IC Elements Not Included in Device Models
489(3)
Summary
492(1)
Problems
493(2)
Review Questions
495(4)
PART IV SPECIFIC DEVICES
Photonic Devices
499(21)
Light-Emitting Diodes (LED)
499(3)
Photodetectors and Solar Cells
502(10)
Biasing for Photodetector and Solar-Cell Applications
502(2)
Carrier Generation in Photodetectors and Solar Cells
504(2)
Photocurrent Equation
506(6)
Lasers
512(8)
Stimulated Emission, Inversion Population, and Other Fundamental Concepts
512(2)
A Typical Heterojunction Laser
514(2)
Summary
516(1)
Problems
517(1)
Review Questions
518(2)
Microwave FETs and Diodes
520(34)
Gallium Arsenide Versus Silicon
522(3)
Dielectric--Semiconductor Interface: Enhancement Versus Depletion FETs
522(1)
Energy Gap
523(1)
Electron Mobility and Saturation Velocity
524(1)
Negative Dynamic Resistance
525(1)
JFET
525(8)
JFET Structure
525(1)
JFET Characteristics
526(4)
SPICE Model and Parameters
530(3)
MESFET
533(3)
MESFET Structure
533(1)
MESFET Characteristics
533(1)
Spice Model and Parameters
534(2)
HEMT
536(4)
Two-Dimensional Electron Gas (2DEG)
537(2)
HEMT Structure and Characteristics
539(1)
Negative Resistance Diodes
540(14)
Amplification and Oscillation by Negative Dynamic Resistance
540(5)
Gunn Diode
545(3)
IMPATT Diode
548(1)
Tunnel Diode
549(2)
Summary
551(1)
Problems
551(1)
Review Questions
552(2)
Power Devices
554(17)
Power Diodes
555(4)
Drift Region in Power Devices
555(2)
Switching Characteristics
557(2)
Schottky Diode
559(1)
Power MOSFET
559(3)
IGBT
562(2)
Thyristor
564(7)
Summary
566(1)
Problems
567(1)
Review Questions
568(3)
Bibliography 571(2)
Answers to Selected Problems 573(6)
Index 579