Muutke küpsiste eelistusi

Principles of Space Instrument Design [Kõva köide]

(University of Birmingham), (University of Birmingham), (University College London), (University College London)
  • Formaat: Hardback, 395 pages, kõrgus x laius x paksus: 255x180x25 mm, kaal: 960 g, 18 Tables, unspecified; 4 Halftones, unspecified; 228 Line drawings, unspecified
  • Sari: Cambridge Aerospace Series
  • Ilmumisaeg: 28-Jun-1998
  • Kirjastus: Cambridge University Press
  • ISBN-10: 0521451647
  • ISBN-13: 9780521451642
Teised raamatud teemal:
  • Formaat: Hardback, 395 pages, kõrgus x laius x paksus: 255x180x25 mm, kaal: 960 g, 18 Tables, unspecified; 4 Halftones, unspecified; 228 Line drawings, unspecified
  • Sari: Cambridge Aerospace Series
  • Ilmumisaeg: 28-Jun-1998
  • Kirjastus: Cambridge University Press
  • ISBN-10: 0521451647
  • ISBN-13: 9780521451642
Teised raamatud teemal:
Provides an informative account of the design of instruments used in rockets and spacecraft.

This informative account of the design of instruments used in rockets and spacecraft begins by introducing the basic principles of designing for the space environment. Following chapters discuss mechanical, structural, thermal and electronic design, including the problems that are frequently encountered in the testing and verification of spacecraft subsystems. The authors carefully describe important aspects of design, including stress analysis, multilayer insulation, two-dimensional sensor systems, mechanisms, the structure of space optics, and project management and control. A final chapter looks toward future developments of space instrument design and addresses issues arising from financial constraints. The book contains lists of symbols, acronyms and units and a comprehensive reference list. Worked examples, found throughout the text, make it valuable to final year undergraduate and beginning graduate students of physics, space science, space-craft engineering and astronautics.

Arvustused

'In this book, four authors with extensive experience of space instrumentation provide an overview of the field and practical advice on how to build space instruments [ contains] a level of practical detail not often seen in books on spacecraft engineering and is most welcome In summary, this is an excellent book covering the field in depth and includes extensive practical advice which can only come from those with many years of hand-on experience.' Colin R. McInnes, The Times Higher Education Supplement ' the book does provide a valuable contribution to the literature, principally for the experimental scientist, working within the broad remit of space physics, whose background in engineering is limited. The book fills a long outstanding omission from the available literature.' Professor J. Stark, Het Ingenieursblad ' a very concise and complete overview a very helpful guide during the early stages of the design but also the more experienced reader will find the sections outside his/her field of competence very instructive.' Space Research Organisation of the Netherlands

Muu info

Provides an informative account of the design of instruments used in rockets and spacecraft.
Preface xiii
1 Designing for space
1(12)
1.1 The challenge of space
1(1)
1.2 The physical environment in space
2(7)
1.2.1 Pressure
2(2)
1.2.2 Temperature
4(1)
1.2.3 Radiation
4(3)
1.2.4 Space debris
7(2)
1.3 The system design of space instruments
9(4)
1.3.1 The system design process
9(1)
1.3.2 Some useful facts
10(1)
1.3.3 A brief example
11(2)
2 Mechanical design
13(60)
2.1 Space instrument framework and structure
14(5)
2.1.1 Forms of structure
15(1)
2.1.2 Shell structures
15(2)
2.1.3 Frames
17(1)
2.1.4 Booms
18(1)
2.2 Stress analysis: some basic elements
19(6)
2.2.1 Stress, strain, Hooke's Law and typical materials
19(1)
2.2.2 Calculation of sections for simple design cases
20(4)
2.2.3 The Finite Element analysis method
24(1)
2.3 Loads
25(6)
2.3.1 Loads on the spacecraft in the launch environment
25(2)
2.3.2 Design loads for instruments and equipment
27(2)
2.3.3 Loads from a mass-acceleration curve
29(1)
2.3.4 Pressure loads
30(1)
2.3.5 Strength factors
30(1)
2.4 Stiffness
31(1)
2.5 Elastic instability and buckling
32(6)
2.5.1 Struts and thin-wall tubes
32(5)
2.5.2 Thin shells
37(1)
2.6 Spacecraft vibration
38(17)
2.6.1 Rockets and mechanical vibration
38(1)
2.6.2 The simple spring - mass oscillator
39(3)
2.6.3 Multi - freedom systems
42(2)
2.6.4 Launch excitation of vibration
44(1)
2.6.5 Random vibration and spectral density
45(3)
2.6.6 Response to random vibration input
48(2)
2.6.7 Damping and Q data
50(1)
2.6.8 Vibration tests
51(2)
2.6.9 Vibration measurement and instrumentation
53(1)
2.6.10 Acoustic vibrations and testing
53(1)
2.6.11 Shock spectra
54(1)
2.6.12 Design for vibration
54(1)
2.7 Materials
55(11)
2.7.1 Requirements for the launch and space environments
55(1)
2.7.2 Mechanical properties
56(2)
2.7.3 Outgassing
58(2)
2.7.4 Thermal properties
60(2)
2.7.5 Selection of materials
62(1)
2.7.6 Metals
62(1)
2.7.7 Plastic films
63(1)
2.7.8 Adhesives
63(1)
2.7.9 Paints
64(1)
2.7.10 Rubbers
64(1)
2.7.11 Composite materials
64(1)
2.7.12 Ceramics and glasses
65(1)
2.7.13 Lubricant materials
66(1)
2.8 Tests of structures
66(1)
2.9 Low - temperature structures for cryogenic conditions
67(1)
2.10 Mass properties
68(1)
2.11 Structure details and common design practice
68(2)
2.12 Structure analysis and mechanical design: a postscript on procedure
70(3)
2.12.1 Themes
70(1)
2.12.2 Procedure
70(3)
3 Thermal design
73(84)
3.1 General background
73(5)
3.1.1 Preamble
73(1)
3.1.2 The temperature of the Earth
73(4)
3.1.3 The temperature of satellites
77(1)
3.1.4 Thermal modelling
78(1)
3.2 Heat, temperature and blackbody radiation
78(7)
3.3 Energy transport mechanisms
85(28)
3.3.1 General
85(3)
3.3.2 Conductive coupling of heat
88(4)
3.3.3 Radiative coupling of heat
92(21)
3.4 Thermal balance
113(13)
3.5 Thermal control elements
126(13)
3.5.1 Introduction
126(1)
3.5.2 Passive elements
126(11)
3.5.3 Active elements
137(2)
3.6 Thermal control strategy
139(2)
3.7 Thermal mathematical models (TMMs)
141(3)
3.8 Transient analysis
144(4)
3.9 Thermal design strategy
148(3)
3.10 Thermal design implementation
151(5)
3.10.1 B.O.E. models
151(1)
3.10.2 Conceptual models
152(1)
3.10.3 Detailed model
153(1)
3.10.4 Thermal balance tests
154(1)
3.10.5 Spacecraft thermal balance
155(1)
3.11 Concluding remarks
156(1)
4 Electronics
157(137)
4.1 Initial Design
157(3)
4.1.1 In the beginning
157(2)
4.1.2 Typical subsystem
159(1)
4.2 Attitude sensing and control
160(19)
4.2.1 Sun sensors
160(3)
4.2.2 Earth sensors
163(2)
4.2.3 Star sensors
165(2)
4.2.4 Crossed anode array system
167(1)
4.2.5 Charge coupled detector (CCD) system
168(2)
4.2.6 Wedge and strip system
170(2)
4.2.7 Magnetometers
172(3)
4.2.8 Thrusters and momentum wheels
175(1)
4.2.9 Magnetic attitude control
176(3)
4.3 Analogue design
179(15)
4.3.1 Introduction
179(1)
4.3.2 Charge sensitive amplifiers (CSAs)
179(5)
4.3.3 Pulse shaping circuits
184(5)
4.3.4 Pulse processing system design
189(3)
4.3.5 Low frequency measurements
192(1)
4.3.6 Sampling
193(1)
4.4 Data handling
194(26)
4.4.1 Introduction
194(1)
4.4.2 User subsystem digital preprocessing
194(1)
4.4.3 Queuing
195(1)
4.4.4 Data compression
196(2)
4.4.5 Histogramming
198(1)
4.4.6 On - board data handling system
199(2)
4.4.7 Subsystem to RTU interface
201(2)
4.4.8 Data management system (DMS)
203(1)
4.4.9 Packet telemetry
204(2)
4.4.10 Commands
206(4)
4.4.11 Error detection
210(10)
4.5 Power systems
220(36)
4.5.1 Primary power sources
220(2)
4.5.2 Solar cells
222(5)
4.5.3 Solar arrays
227(3)
4.5.4 Storage cell specifications
230(1)
4.5.5 Types of cell and their application
231(5)
4.5.6 Regulation
236(1)
4.5.7 Dissipative systems
237(2)
4.5.8 Non - dissipative systems
239(2)
4.5.9 Regulators
241(10)
4.5.10 Power supply monitoring
251(2)
4.5.11 Noise reduction
253(3)
4.6 Harnesses, connectors and EMC
256(18)
4.6.1 Harnesses
256(1)
4.6.2 Harnesses and EMC
257(4)
4.6.3 Shielding techniques
261(3)
4.6.4 Shielding efficiency
264(5)
4.6.5 Outgassing requirements and EMC
269(1)
4.6.6 Connectors
270(4)
4.7 Reliability
274(20)
4.7.1 Introduction
274(1)
4.7.2 Design techniques
274(1)
4.7.3 Heat dissipation
275(1)
4.7.4 Latch - up
275(1)
4.7.5 Interfaces and single point failures
276(2)
4.7.6 Housekeeping
278(2)
4.7.7 Component specification
280(6)
4.7.8 Failure rates
286(1)
4.7.9 Outgassing
287(1)
4.7.10 Fabrication
287(2)
4.7.11 Radiation
289(5)
5 Mechanism design and actuation
294(21)
5.1 Design considerations
295(8)
5.1.1 Kinematics
295(1)
5.1.2 Constraints and kinematic design
295(2)
5.1.3 Bearings, their design and lubrication
297(4)
5.1.4 Flexures and flexure hinges
301(1)
5.1.5 Materials for space mechanisms
302(1)
5.1.6 Finishes for instrument and mechanism materials
302(1)
5.2 Actuation of space mechanisms
303(12)
5.2.1 DC and stepping motors
303(6)
5.2.2 Linear actuators
309(1)
5.2.3 Gear transmissions
309(3)
5.2.4 Fine motions
312(1)
5.2.5 Ribbon and belt drives
312(1)
5.2.6 Pyrotechnic actuators
312(2)
5.2.7 Space tribology and mechanism life
314(1)
6 Space optics technology
315(12)
6.1 Materials for optics
315(1)
6.2 Materials for mountings and structures
316(1)
6.3 Kinematic principles of precise mountings
317(3)
6.4 Detail design of component mountings
320(1)
6.5 Alignment, and its adjustment
321(3)
6.6 Focussing
324(1)
6.7 Pointing and scanning
324(1)
6.8 Stray light
324(1)
6.9 Contamination of optical surfaces
325(2)
7 Project management and control
327(30)
7.1 Preamble
327(1)
7.2 Introduction
327(2)
7.3 The project team and external agencies
329(4)
7.3.1 The project team
330(1)
7.3.2 The funding agency
331(2)
7.3.3 The mission agency
333(1)
7.3.4 The launch agency
333(1)
7.4 Management structure in the project team
333(6)
7.4.1 The principal investigator
334(1)
7.4.2 The project manager
335(1)
7.4.3 The co - investigators
336(1)
7.4.4 The local manager
337(1)
7.4.5 The steering committee
337(1)
7.4.6 The project management committee
337(1)
7.4.7 Management structures
338(1)
7.5 Project phases
339(4)
7.5.1 Normal phases
339(4)
7.5.2 Project reviews
342(1)
7.6 Schedule control
343(4)
7.6.1 Progress reporting
344(1)
7.6.2 Milestone charts
344(1)
7.6.3 Bar charts or waterfall charts
345(1)
7.6.4 PERT charts
345(2)
7.7 Documentation
347(2)
7.7.1 The proposal
347(1)
7.7.2 Project documentation
348(1)
7.8 Quality assurance
349(3)
7.8.1 Specification of the project
349(1)
7.8.2 Manufacturing methods and practices
350(1)
7.8.3 Monitoring and reporting of results
350(1)
7.8.4 Samples of documents and reports
350(1)
7.8.5 Detailed contents
350(2)
7.9 Financial estimation and control
352(4)
7.9.1 Work breakdown schemes
352(1)
7.9.2 Cost estimates
353(1)
7.9.3 Financial reporting
354(1)
7.9.4 Financial policy issues
355(1)
7.10 Conclusions
356(1)
8 Epilogue: space instruments and small satellites
357(4)
8.1 The background
357(1)
8.2 What is small?
358(1)
8.3 The extra tasks
359(1)
8.4 Conclusion
360(1)
Appendixes 361(11)
1 List of symbols 361(9)
2 List of acronyms and units 370(2)
Notes to the text 372(2)
References and bibliography 374(4)
Index 378