|
Part I Probabilistic Logics |
|
|
|
|
3 | (8) |
|
1.1 The Fundamental Question of Probabilistic Logic |
|
|
3 | (1) |
|
1.2 The Potential of Probabilistic Logic |
|
|
4 | (1) |
|
|
5 | (2) |
|
1.4 Philosophical and Historical Background |
|
|
7 | (2) |
|
1.5 Notation and Formal Setting |
|
|
9 | (2) |
|
2 Standard Probabilistic Semantics |
|
|
11 | (10) |
|
|
11 | (7) |
|
2.1.1 Kolmogorov Probabilities |
|
|
12 | (1) |
|
2.1.2 Interval-Valued Probabilities |
|
|
13 | (2) |
|
2.1.3 Imprecise Probabilities |
|
|
15 | (1) |
|
|
16 | (2) |
|
|
18 | (1) |
|
|
19 | (2) |
|
3 Probabilistic Argumentation |
|
|
21 | (12) |
|
|
22 | (3) |
|
|
25 | (1) |
|
|
26 | (7) |
|
3.3.1 Generalizing the Standard Semantics |
|
|
26 | (2) |
|
3.3.2 Premises from Unreliable Sources |
|
|
28 | (5) |
|
|
33 | (16) |
|
|
33 | (11) |
|
4.1.1 Calculating Evidential Probability |
|
|
37 | (3) |
|
4.1.2 Extended Example: When Pigs Die |
|
|
40 | (4) |
|
|
44 | (1) |
|
|
44 | (5) |
|
4.3.1 First-order Evidential Probability |
|
|
45 | (1) |
|
4.3.2 Counterfactual Evidential Probability |
|
|
46 | (1) |
|
4.3.3 Second-Order Evidential Probability |
|
|
46 | (3) |
|
|
49 | (14) |
|
|
49 | (8) |
|
5.1.1 Classical Stistics as Inference? |
|
|
49 | (3) |
|
5.1.2 Fiducial Probability |
|
|
52 | (3) |
|
5.1.3 Evidential Probability and Direct Inference |
|
|
55 | (2) |
|
|
57 | (2) |
|
5.2.1 Fiducial Probability |
|
|
57 | (1) |
|
5.2.2 Evidential Probability and the Fiducial Argument |
|
|
58 | (1) |
|
|
59 | (4) |
|
5.3.1 Fiducial Probability |
|
|
59 | (1) |
|
5.3.2 Evidential Probability |
|
|
60 | (3) |
|
6 Bayesian Statistical Inference |
|
|
63 | (10) |
|
|
63 | (2) |
|
|
65 | (4) |
|
6.2.1 Infinitely Many Hypotheses |
|
|
66 | (2) |
|
6.2.2 Interval-Valued Priors and Posteriors |
|
|
68 | (1) |
|
|
69 | (4) |
|
6.3.1 Interpretation of Probabilities |
|
|
69 | (1) |
|
6.3.2 Bayesian Confidence Intervals |
|
|
70 | (3) |
|
7 Objective Bayesian Epistemology |
|
|
73 | (12) |
|
|
73 | (7) |
|
7.1.1 Determining Objective Bayesian Degrees of Belief |
|
|
74 | (1) |
|
7.1.2 Constraints on Degrees of Belief |
|
|
75 | (1) |
|
7.1.3 Propositional Languages |
|
|
76 | (1) |
|
7.1.4 Predicate Languages |
|
|
77 | (2) |
|
7.1.5 Objective Bayesianism in Perspective |
|
|
79 | (1) |
|
|
80 | (1) |
|
|
80 | (5) |
|
Part II Probabilistic Networks |
|
|
|
8 Credal and Bayesian Networks |
|
|
85 | (14) |
|
8.1 Kinds of Probabilistic Network |
|
|
86 | (5) |
|
|
87 | (1) |
|
8.1.2 Extensions and Coordinates |
|
|
88 | (2) |
|
8.1.3 Parameterised Credal Networks |
|
|
90 | (1) |
|
8.2 Algorithms for Probabilistic Networks |
|
|
91 | (8) |
|
8.2.1 Requirements of the Probabilistic Logic Framework |
|
|
91 | (1) |
|
8.2.2 Compiling Probabilistic Networks |
|
|
92 | (2) |
|
8.2.3 The Hill-Climbing Algorithm for Credal Networks |
|
|
94 | (2) |
|
8.2.4 Complex Queries and Parameterised Credal Networks |
|
|
96 | (3) |
|
9 Networks for the Standard Semantics |
|
|
99 | (8) |
|
9.1 The Poverty of Standard Semantics |
|
|
99 | (1) |
|
9.2 Constructing a Credal Net |
|
|
100 | (4) |
|
9.3 Dilation and Independence |
|
|
104 | (3) |
|
10 Networks for Probabilistic Argumentation |
|
|
107 | (4) |
|
10.1 Probabilistic Argumentation with Credal Sets |
|
|
107 | (1) |
|
10.2 Constructing and Applying the Credal Network |
|
|
108 | (3) |
|
11 Networks for Evidential Probability |
|
|
111 | (8) |
|
11.1 First-Order Evidential Probability |
|
|
111 | (2) |
|
11.2 Second-Order Evidential Probability |
|
|
113 | (3) |
|
|
116 | (3) |
|
12 Networks for Statistical Inference |
|
|
119 | (6) |
|
12.1 Functional Models and Networks |
|
|
119 | (4) |
|
12.1.1 Capturing the Fiducial Argument in a Network |
|
|
119 | (1) |
|
12.1.2 Aiding Fiducial Inference with Networks |
|
|
120 | (2) |
|
12.1.3 Trouble with Step-by-Step Fiducial Probability |
|
|
122 | (1) |
|
12.2 Evidential Probability and the Fiducial Argument |
|
|
123 | (2) |
|
12.2.1 First-Order EP and the Fiducial Argument |
|
|
123 | (1) |
|
12.2.2 Second-Order EP and the Fiducial Argument |
|
|
124 | (1) |
|
13 Networks for Bayesian Statistical Inference |
|
|
125 | (8) |
|
13.1 Credal Networks as Statistical Hypotheses |
|
|
125 | (3) |
|
13.1.1 Construction of the Credal Network |
|
|
126 | (1) |
|
13.1.2 Computational Advantages of Using the Credal Network |
|
|
127 | (1) |
|
13.2 Extending Statistical Inference with Credal Networks |
|
|
128 | (5) |
|
13.2.1 Interval-Valued Likelihoods |
|
|
129 | (2) |
|
13.2.2 Logically Complex Statements with Statistical Hypotheses |
|
|
131 | (2) |
|
14 Networks for Objective Bayesianism |
|
|
133 | (6) |
|
14.1 Propositional Languages |
|
|
133 | (2) |
|
|
135 | (4) |
|
|
139 | (2) |
References |
|
141 | (12) |
Index |
|
153 | |