Notation |
|
xi | |
Preface |
|
xiii | |
Introduction |
|
xv | |
|
|
1 | (9) |
|
1.1 Annihilation and creation operators |
|
|
1 | (3) |
|
1.2 Lie algebras on the boson Fock space |
|
|
4 | (2) |
|
1.3 Fock space over a Hilbert space |
|
|
6 | (4) |
|
|
9 | (1) |
|
|
10 | (17) |
|
|
10 | (2) |
|
2.2 Heisenberg--Weyl Lie algebra |
|
|
12 | (1) |
|
2.3 Oscillator Lie algebra osc |
|
|
13 | (1) |
|
|
14 | (6) |
|
|
20 | (1) |
|
2.6 Special orthogonal Lie algebras |
|
|
21 | (6) |
|
|
26 | (1) |
|
3 Basic probability distributions on Lie algebras |
|
|
27 | (20) |
|
3.1 Gaussian distribution on |
|
|
27 | (4) |
|
3.2 Poisson distribution on osc |
|
|
31 | (5) |
|
3.3 Gamma distribution on sl2(R) |
|
|
36 | (11) |
|
|
44 | (3) |
|
4 Noncommutative random variables |
|
|
47 | (28) |
|
4.1 Classical probability spaces |
|
|
47 | (1) |
|
4.2 Noncommutative probability spaces |
|
|
48 | (6) |
|
4.3 Noncommutative random variables |
|
|
54 | (3) |
|
4.4 Functional calculus for Hermitian matrices |
|
|
57 | (2) |
|
4.5 The Lie algebra so(3) |
|
|
59 | (6) |
|
4.6 Trace and density matrix |
|
|
65 | (5) |
|
4.7 Spin measurement and the Lie algebra so(3) |
|
|
70 | (5) |
|
|
72 | (3) |
|
5 Noncommutative stochastic integration |
|
|
75 | (15) |
|
5.1 Construction of the Fock space |
|
|
75 | (5) |
|
5.2 Creation, annihilation, and conservation operators |
|
|
80 | (3) |
|
5.3 Quantum stochastic integrals |
|
|
83 | (3) |
|
|
86 | (4) |
|
|
88 | (2) |
|
6 Random variables on real Lie algebras |
|
|
90 | (13) |
|
6.1 Gaussian and Poisson random variables on osc |
|
|
90 | (4) |
|
6.2 Meixner, gamma, and Pascal random variables on sl2(R) |
|
|
94 | (2) |
|
6.3 Discrete distributions on so(2) and so(3) |
|
|
96 | (1) |
|
|
97 | (6) |
|
|
99 | (4) |
|
7 Weyl calculus on real Lie algebras |
|
|
103 | (28) |
|
7.1 Joint moments of noncommuting random variables |
|
|
103 | (3) |
|
7.2 Combinatorial Weyl calculus |
|
|
106 | (1) |
|
7.3 Heisenberg--Weyl algebra |
|
|
107 | (7) |
|
7.4 Functional calculus on real Lie algebras |
|
|
114 | (3) |
|
7.5 Functional calculus on the affine algebra |
|
|
117 | (5) |
|
7.6 Wigner functions on so(3) |
|
|
122 | (6) |
|
|
128 | (3) |
|
|
130 | (1) |
|
8 Levy processes on real Lie algebras |
|
|
131 | (18) |
|
|
131 | (3) |
|
|
134 | (6) |
|
8.3 Levy processes on and osc |
|
|
140 | (2) |
|
|
142 | (7) |
|
|
148 | (1) |
|
9 A guide to the Malliavin calculus |
|
|
149 | (29) |
|
9.1 Creation and annihilation operators |
|
|
149 | (6) |
|
|
155 | (7) |
|
|
162 | (6) |
|
|
168 | (10) |
|
|
173 | (5) |
|
10 Noncommutative Girsanov theorem |
|
|
178 | (12) |
|
|
178 | (2) |
|
10.2 Quasi-invariance on osc |
|
|
180 | (3) |
|
10.3 Quasi-invariance on sl2(R) |
|
|
183 | (1) |
|
|
184 | (1) |
|
10.5 Quasi-invariance for Levy processes |
|
|
185 | (5) |
|
|
189 | (1) |
|
11 Noncommutative integration by parts |
|
|
190 | (27) |
|
11.1 Noncommutative gradient operators |
|
|
190 | (2) |
|
|
192 | (5) |
|
11.3 Noncommutative Wiener space |
|
|
197 | (15) |
|
11.4 The white noise case |
|
|
212 | (5) |
|
|
216 | (1) |
|
12 Smoothness of densities on real Lie algebras |
|
|
217 | (14) |
|
12.1 Noncommutative Wiener space |
|
|
217 | (5) |
|
|
222 | (2) |
|
12.3 Towards a Hormander-type theorem |
|
|
224 | (7) |
|
|
230 | (1) |
|
|
231 | (18) |
|
|
231 | (8) |
|
A.2 Moments and cumulants |
|
|
239 | (2) |
|
|
241 | (2) |
|
A.4 Cauchy--Stieltjes transform |
|
|
243 | (1) |
|
|
244 | (1) |
|
|
245 | (1) |
|
A.7 Closability of linear operators |
|
|
246 | (1) |
|
|
247 | (2) |
|
|
249 | (22) |
|
|
249 | (1) |
|
|
250 | (3) |
|
|
253 | (3) |
|
|
256 | (3) |
|
|
259 | (1) |
|
|
260 | (6) |
|
|
266 | (1) |
|
|
266 | (1) |
|
|
267 | (2) |
|
|
269 | (1) |
|
|
270 | (1) |
|
|
270 | (1) |
References |
|
271 | (8) |
Index |
|
279 | |