Preface |
|
xiii | |
For students: How to use this book |
|
xvii | |
Chapter 1 Intervals |
|
1 | (4) |
|
1.1 Distance and neighborhoods |
|
|
1 | (2) |
|
|
3 | (2) |
Chapter 2 Topology of the real line |
|
5 | (6) |
|
2.1 Open subsets of Real Numbers |
|
|
5 | (2) |
|
2.2 Closed subsets of Real Numbers |
|
|
7 | (4) |
Chapter 3 Continuous functions from Real Numbers to Real Numbers |
|
11 | (10) |
|
3.1 Continuity-as a local property |
|
|
11 | (2) |
|
3.2 Continuity-as a global property |
|
|
13 | (3) |
|
3.3 Functions defined on subsets of Real Numbers |
|
|
16 | (5) |
Chapter 4 Sequences of real numbers |
|
21 | (12) |
|
4.1 Convergence of sequences |
|
|
21 | (3) |
|
4.2 Algebraic combinations of sequences |
|
|
24 | (1) |
|
4.3 Sufficient condition for convergence |
|
|
25 | (4) |
|
|
29 | (4) |
Chapter 5 Connectedness and the intermediate value theorem |
|
33 | (6) |
|
5.1 Connected subsets of Real Numbers |
|
|
33 | (2) |
|
5.2 Continuous images of connected sets |
|
|
35 | (2) |
|
|
37 | (2) |
Chapter 6 Compactness and the extreme value theorem |
|
39 | (6) |
|
|
40 | (1) |
|
6.2 Examples of compact subsets of Real Numbers |
|
|
41 | (2) |
|
6.3 The extreme value theorem |
|
|
43 | (2) |
Chapter 7 Limits of real valued functions |
|
45 | (4) |
|
|
45 | (1) |
|
7.2 Continuity and limits |
|
|
46 | (3) |
Chapter 8 Differentiation of real valued functions |
|
49 | (10) |
|
8.1 The families of "big-oh" and "little-oh" |
|
|
49 | (3) |
|
|
52 | (1) |
|
|
53 | (2) |
|
|
55 | (4) |
Chapter 9 Metric spaces |
|
59 | (8) |
|
|
60 | (1) |
|
|
60 | (4) |
|
|
64 | (3) |
Chapter 10 Interiors, closures, and boundaries |
|
67 | (4) |
|
10.1 Definitions and examples |
|
|
67 | (1) |
|
|
68 | (1) |
|
10.3 Accumulation points and closures |
|
|
69 | (2) |
Chapter 11 The topology of metric spaces |
|
71 | (6) |
|
11.1 Open and closed sets |
|
|
71 | (3) |
|
11.2 The relative topology |
|
|
74 | (3) |
Chapter 12 Sequences in metric spaces |
|
77 | (4) |
|
12.1 Convergence of sequences |
|
|
77 | (1) |
|
12.2 Sequential characterizations of topological properties |
|
|
78 | (1) |
|
12.3 Products of metric spaces |
|
|
79 | (2) |
Chapter 13 Uniform convergence |
|
81 | (4) |
|
13.1 The uniform metric on the space of bounded functions |
|
|
81 | (2) |
|
13.2 Pointwise convergence |
|
|
83 | (2) |
Chapter 14 More on continuity and limits |
|
85 | (14) |
|
14.1 Continuous functions |
|
|
85 | (6) |
|
14.2 Maps into and from products |
|
|
91 | (2) |
|
|
93 | (6) |
Chapter 15 Compact metric spaces |
|
99 | (4) |
|
15.1 Definition and elementary properties |
|
|
99 | (2) |
|
15.2 The extreme value theorem |
|
|
101 | (1) |
|
|
102 | (1) |
Chapter 16 Sequential characterization of compactness |
|
103 | (6) |
|
16.1 Sequential compactness |
|
|
103 | (2) |
|
16.2 Conditions equivalent to compactness |
|
|
105 | (1) |
|
16.3 Products of compact spaces |
|
|
106 | (1) |
|
16.4 The Heine-Borel theorem |
|
|
107 | (2) |
Chapter 17 Connectedness |
|
109 | (4) |
|
|
109 | (2) |
|
17.2 Arcwise connected spaces |
|
|
111 | (2) |
Chapter 18 Complete spaces |
|
113 | (4) |
|
|
113 | (1) |
|
|
114 | (1) |
|
18.3 Completeness vs. compactness |
|
|
115 | (2) |
Chapter 19 A fixed point theorem |
|
117 | (8) |
|
19.1 The contractive mapping theorem |
|
|
117 | (5) |
|
19.2 Application to integral equations |
|
|
122 | (3) |
Chapter 20 Vector spaces |
|
125 | (10) |
|
20.1 Definitions and examples |
|
|
125 | (5) |
|
|
130 | (2) |
|
|
132 | (3) |
Chapter 21 Linearity |
|
135 | (18) |
|
21.1 Linear transformations |
|
|
135 | (4) |
|
21.2 The algebra of linear transformations |
|
|
139 | (3) |
|
|
142 | (4) |
|
|
146 | (2) |
|
21.5 Matrix representations of linear transformations |
|
|
148 | (5) |
Chapter 22 Norms |
|
153 | (10) |
|
22.1 Norms on linear spaces |
|
|
153 | (2) |
|
22.2 Norms induce metrics |
|
|
155 | (1) |
|
|
156 | (4) |
|
|
160 | (3) |
Chapter 23 Continuity and linearity |
|
163 | (12) |
|
23.1 Bounded linear transformations |
|
|
163 | (5) |
|
23.2 The Stone-Weierstrass theorem |
|
|
168 | (3) |
|
|
171 | (1) |
|
23.4 Dual spaces and adjoints |
|
|
172 | (3) |
Chapter 24 The Cauchy integral |
|
175 | (14) |
|
|
175 | (3) |
|
24.2 The integral of step functions |
|
|
178 | (3) |
|
|
181 | (8) |
Chapter 25 Differential calculus |
|
189 | (14) |
|
25.1 "Big-oh" and "little-oh" functions |
|
|
189 | (3) |
|
|
192 | (1) |
|
|
193 | (4) |
|
25.4 Differentiation of curves |
|
|
197 | (2) |
|
25.5 Directional derivatives |
|
|
199 | (2) |
|
25.6 Functions mapping into product spaces |
|
|
201 | (2) |
Chapter 26 Partial derivatives and iterated integrals |
|
203 | (14) |
|
26.1 The mean value theorem(s) |
|
|
203 | (6) |
|
|
209 | (5) |
|
|
214 | (3) |
Chapter 27 Computations in (Real Numbers)n |
|
217 | (16) |
|
|
217 | (3) |
|
|
220 | (5) |
|
|
225 | (1) |
|
|
226 | (7) |
Chapter 28 Infinite series |
|
233 | (18) |
|
28.1 Convergence of series |
|
|
234 | (5) |
|
28.2 Series of positive scalars |
|
|
239 | (1) |
|
28.3 Absolute convergence |
|
|
240 | (1) |
|
|
241 | (10) |
Chapter 29 The implicit function theorem |
|
251 | (14) |
|
29.1 The inverse function theorem |
|
|
252 | (4) |
|
29.2 The implicit function theorem |
|
|
256 | (9) |
Chapter 30 Higher order derivatives |
|
265 | (12) |
|
30.1 Multilinear functions |
|
|
265 | (6) |
|
30.2 Second order differentials |
|
|
271 | (5) |
|
30.3 Higher order differentials |
|
|
276 | (1) |
Appendix A. Quantifiers |
|
277 | (2) |
Appendix B. Sets |
|
279 | (4) |
Appendix C. Special subsets of Real Numbers |
|
283 | (2) |
Appendix D. Logical connectives |
|
285 | (6) |
|
D.1 Disjunction and conjunction |
|
|
285 | (2) |
|
|
287 | (1) |
|
D.3 Restricted quantifiers |
|
|
288 | (1) |
|
|
289 | (2) |
Appendix E. Writing mathematics |
|
291 | (6) |
|
|
291 | (1) |
|
E.2 Checklist for writing mathematics |
|
|
292 | (3) |
|
E.3 Fraktur and Greek alphabets |
|
|
295 | (2) |
Appendix F. Set operations |
|
297 | (6) |
|
|
297 | (2) |
|
|
299 | (2) |
|
|
301 | (2) |
Appendix G. Arithmetic |
|
303 | (6) |
|
|
303 | (2) |
|
G.2 Uniqueness of identities |
|
|
305 | (1) |
|
G.3 Uniqueness of inverses |
|
|
305 | (1) |
|
G.4 Another consequence of uniqueness |
|
|
306 | (3) |
Appendix H. Order properties of Real Numbers |
|
309 | (4) |
Appendix I. Natural numbers and mathematical induction |
|
313 | (4) |
Appendix J. Least upper bounds and greatest lower bounds |
|
317 | (6) |
|
J.1 Upper and lower bounds |
|
|
317 | (1) |
|
J.2 Least upper and greatest lower bounds |
|
|
318 | (2) |
|
J.3 The least upper bound axiom for Real Numbers |
|
|
320 | (1) |
|
J.4 The Archimedean property |
|
|
321 | (2) |
Appendix K. Products, relations, and functions |
|
323 | (4) |
|
|
323 | (1) |
|
|
324 | (1) |
|
|
325 | (2) |
Appendix L. Properties of functions |
|
327 | (4) |
|
L.1 Images and inverse images |
|
|
327 | (1) |
|
L.2 Composition of functions |
|
|
328 | (1) |
|
L.3 The identity function |
|
|
329 | (1) |
|
|
329 | (1) |
|
L.5 Restrictions and extensions |
|
|
330 | (1) |
Appendix M. Functions that have inverses |
|
331 | (6) |
|
M.1 Injections, surjections, and bijections |
|
|
331 | (3) |
|
|
334 | (3) |
Appendix N. Products |
|
337 | (2) |
Appendix O. Finite and infinite sets |
|
339 | (4) |
Appendix P. Countable and uncountable sets |
|
343 | (4) |
Bibliography |
|
347 | (2) |
Index |
|
349 | |