Muutke küpsiste eelistusi

Problems Based Course in Advanced Calculus [Kõva köide]

  • Formaat: Hardback, 365 pages, kõrgus x laius: 254x178 mm, kaal: 828 g
  • Sari: Pure and Applied Undergraduate Texts
  • Ilmumisaeg: 30-Aug-2018
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470442469
  • ISBN-13: 9781470442460
Teised raamatud teemal:
  • Formaat: Hardback, 365 pages, kõrgus x laius: 254x178 mm, kaal: 828 g
  • Sari: Pure and Applied Undergraduate Texts
  • Ilmumisaeg: 30-Aug-2018
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470442469
  • ISBN-13: 9781470442460
Teised raamatud teemal:
This textbook is meant for advanced calculus courses taken by majors in math and physical sciences who have completed a standard introductory calculus sequence. It focuses on conceptual development and proofs through exercises or problems, covering intervals; topology of the real line; continuous functions from R to R; sequences of real numbers; connectedness and the intermediate value theorem; compactness and the extreme value theorem; the limits of real valued functions; differentiation of real valued functions; metric spaces; interiors, closures, and boundaries; the topology of metric spaces; sequences in metric spaces; uniform convergence; compact metric spaces; sequential characterization of compactness; connectedness; complete spaces; the contractive mapping theorem; vector spaces; linearity; continuity and linearity; norms; the Cauchy integral; differential calculus; partial derivatives and iterated integrals; computations in Rn; infinite series; the implicit function theorem; and higher order derivatives. The appendices summarize prerequisite information. Annotation ©2018 Ringgold, Inc., Portland, OR (protoview.com)
Preface xiii
For students: How to use this book xvii
Chapter 1 Intervals 1(4)
1.1 Distance and neighborhoods
1(2)
1.2 Interior of a set
3(2)
Chapter 2 Topology of the real line 5(6)
2.1 Open subsets of Real Numbers
5(2)
2.2 Closed subsets of Real Numbers
7(4)
Chapter 3 Continuous functions from Real Numbers to Real Numbers 11(10)
3.1 Continuity-as a local property
11(2)
3.2 Continuity-as a global property
13(3)
3.3 Functions defined on subsets of Real Numbers
16(5)
Chapter 4 Sequences of real numbers 21(12)
4.1 Convergence of sequences
21(3)
4.2 Algebraic combinations of sequences
24(1)
4.3 Sufficient condition for convergence
25(4)
4.4 Subsequences
29(4)
Chapter 5 Connectedness and the intermediate value theorem 33(6)
5.1 Connected subsets of Real Numbers
33(2)
5.2 Continuous images of connected sets
35(2)
5.3 Homeomorphisms
37(2)
Chapter 6 Compactness and the extreme value theorem 39(6)
6.1 Compactness
40(1)
6.2 Examples of compact subsets of Real Numbers
41(2)
6.3 The extreme value theorem
43(2)
Chapter 7 Limits of real valued functions 45(4)
7.1 Definition
45(1)
7.2 Continuity and limits
46(3)
Chapter 8 Differentiation of real valued functions 49(10)
8.1 The families of "big-oh" and "little-oh"
49(3)
8.2 Tangency
52(1)
8.3 Linear approximation
53(2)
8.4 Differentiability
55(4)
Chapter 9 Metric spaces 59(8)
9.1 Definitions
60(1)
9.2 Examples
60(4)
9.3 Equivalent metrics
64(3)
Chapter 10 Interiors, closures, and boundaries 67(4)
10.1 Definitions and examples
67(1)
10.2 Interior points
68(1)
10.3 Accumulation points and closures
69(2)
Chapter 11 The topology of metric spaces 71(6)
11.1 Open and closed sets
71(3)
11.2 The relative topology
74(3)
Chapter 12 Sequences in metric spaces 77(4)
12.1 Convergence of sequences
77(1)
12.2 Sequential characterizations of topological properties
78(1)
12.3 Products of metric spaces
79(2)
Chapter 13 Uniform convergence 81(4)
13.1 The uniform metric on the space of bounded functions
81(2)
13.2 Pointwise convergence
83(2)
Chapter 14 More on continuity and limits 85(14)
14.1 Continuous functions
85(6)
14.2 Maps into and from products
91(2)
14.3 Limits
93(6)
Chapter 15 Compact metric spaces 99(4)
15.1 Definition and elementary properties
99(2)
15.2 The extreme value theorem
101(1)
15.3 Dini's theorem
102(1)
Chapter 16 Sequential characterization of compactness 103(6)
16.1 Sequential compactness
103(2)
16.2 Conditions equivalent to compactness
105(1)
16.3 Products of compact spaces
106(1)
16.4 The Heine-Borel theorem
107(2)
Chapter 17 Connectedness 109(4)
17.1 Connected spaces
109(2)
17.2 Arcwise connected spaces
111(2)
Chapter 18 Complete spaces 113(4)
18.1 Cauchy sequences
113(1)
18.2 Completeness
114(1)
18.3 Completeness vs. compactness
115(2)
Chapter 19 A fixed point theorem 117(8)
19.1 The contractive mapping theorem
117(5)
19.2 Application to integral equations
122(3)
Chapter 20 Vector spaces 125(10)
20.1 Definitions and examples
125(5)
20.2 Linear combinations
130(2)
20.3 Convex combinations
132(3)
Chapter 21 Linearity 135(18)
21.1 Linear transformations
135(4)
21.2 The algebra of linear transformations
139(3)
21.3 Matrices
142(4)
21.4 Determinants
146(2)
21.5 Matrix representations of linear transformations
148(5)
Chapter 22 Norms 153(10)
22.1 Norms on linear spaces
153(2)
22.2 Norms induce metrics
155(1)
22.3 Products
156(4)
22.4 The space B(S,V)
160(3)
Chapter 23 Continuity and linearity 163(12)
23.1 Bounded linear transformations
163(5)
23.2 The Stone-Weierstrass theorem
168(3)
23.3 Banach spaces
171(1)
23.4 Dual spaces and adjoints
172(3)
Chapter 24 The Cauchy integral 175(14)
24.1 Uniform continuity
175(3)
24.2 The integral of step functions
178(3)
24.3 The Cauchy integral
181(8)
Chapter 25 Differential calculus 189(14)
25.1 "Big-oh" and "little-oh" functions
189(3)
25.2 Tangency
192(1)
25.3 Differentiation
193(4)
25.4 Differentiation of curves
197(2)
25.5 Directional derivatives
199(2)
25.6 Functions mapping into product spaces
201(2)
Chapter 26 Partial derivatives and iterated integrals 203(14)
26.1 The mean value theorem(s)
203(6)
26.2 Partial derivatives
209(5)
26.3 Iterated integrals
214(3)
Chapter 27 Computations in (Real Numbers)n 217(16)
27.1 Inner products
217(3)
27.2 The gradient
220(5)
27.3 The Jacobian matrix
225(1)
27.4 The chain rule
226(7)
Chapter 28 Infinite series 233(18)
28.1 Convergence of series
234(5)
28.2 Series of positive scalars
239(1)
28.3 Absolute convergence
240(1)
28.4 Power series
241(10)
Chapter 29 The implicit function theorem 251(14)
29.1 The inverse function theorem
252(4)
29.2 The implicit function theorem
256(9)
Chapter 30 Higher order derivatives 265(12)
30.1 Multilinear functions
265(6)
30.2 Second order differentials
271(5)
30.3 Higher order differentials
276(1)
Appendix A. Quantifiers 277(2)
Appendix B. Sets 279(4)
Appendix C. Special subsets of Real Numbers 283(2)
Appendix D. Logical connectives 285(6)
D.1 Disjunction and conjunction
285(2)
D.2 Implication
287(1)
D.3 Restricted quantifiers
288(1)
D.4 Negation
289(2)
Appendix E. Writing mathematics 291(6)
E.1 Proving theorems
291(1)
E.2 Checklist for writing mathematics
292(3)
E.3 Fraktur and Greek alphabets
295(2)
Appendix F. Set operations 297(6)
F.1 Unions
297(2)
F.2 Intersections
299(2)
F.3 Complements
301(2)
Appendix G. Arithmetic 303(6)
G.1 The field axioms
303(2)
G.2 Uniqueness of identities
305(1)
G.3 Uniqueness of inverses
305(1)
G.4 Another consequence of uniqueness
306(3)
Appendix H. Order properties of Real Numbers 309(4)
Appendix I. Natural numbers and mathematical induction 313(4)
Appendix J. Least upper bounds and greatest lower bounds 317(6)
J.1 Upper and lower bounds
317(1)
J.2 Least upper and greatest lower bounds
318(2)
J.3 The least upper bound axiom for Real Numbers
320(1)
J.4 The Archimedean property
321(2)
Appendix K. Products, relations, and functions 323(4)
K.1 Cartesian products
323(1)
K.2 Relations
324(1)
K.3 Functions
325(2)
Appendix L. Properties of functions 327(4)
L.1 Images and inverse images
327(1)
L.2 Composition of functions
328(1)
L.3 The identity function
329(1)
L.4 Diagrams
329(1)
L.5 Restrictions and extensions
330(1)
Appendix M. Functions that have inverses 331(6)
M.1 Injections, surjections, and bijections
331(3)
M.2 Inverse functions
334(3)
Appendix N. Products 337(2)
Appendix O. Finite and infinite sets 339(4)
Appendix P. Countable and uncountable sets 343(4)
Bibliography 347(2)
Index 349
John M. Erdman, Portland State University, OR.