Muutke küpsiste eelistusi

Progress in Lorentzian Geometry: GeLoMer 2024, Merida, Mexico, January 29February 2 [Kõva köide]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Hardback, 378 pages, kõrgus x laius: 235x155 mm, 7 Illustrations, color; 9 Illustrations, black and white; X, 378 p. 16 illus., 7 illus. in color., 1 Hardback
  • Sari: Springer Proceedings in Mathematics & Statistics 512
  • Ilmumisaeg: 01-Oct-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031992113
  • ISBN-13: 9783031992117
  • Kõva köide
  • Hind: 206,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 242,59 €
  • Säästad 15%
  • See raamat ei ole veel ilmunud. Raamatu kohalejõudmiseks kulub orienteeruvalt 2-4 nädalat peale raamatu väljaandmist.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 378 pages, kõrgus x laius: 235x155 mm, 7 Illustrations, color; 9 Illustrations, black and white; X, 378 p. 16 illus., 7 illus. in color., 1 Hardback
  • Sari: Springer Proceedings in Mathematics & Statistics 512
  • Ilmumisaeg: 01-Oct-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031992113
  • ISBN-13: 9783031992117
This proceedings volume gathers selected, revised papers presented at the XI International Meeting on Lorentzian Geometry (GeLoMer 2024), held at the Autonomous University of Yucatán, Mexico, from January 29 to February 2, 2024.



Lorentzian geometry provides the mathematical foundation for Einstein's theory of relativity. It incorporates aspects from different branches of mathematics, such as differential geometry, partial differential equations, and mathematical analysis, to name a few.



This volume includes surveys describing the state-of-the-art in specific areas, and a selection of the most relevant results presented at the conference, which is seen as a benchmark for those working in Lorentz geometry due to its relevance.



Given its scope, the book will be of interest to both young and experienced mathematicians and physicists whose research involves general relativity and semi-Riemannian geometry.
Preface.- Semi Riemannian Nearly Khaler G X G.- Global flatness for
asymptotically at spacetimes.- Isometric lightlike immersions in R x Qn+1,
c,1.- The vacuum weighted Einstein field equations on pure radiation waves.-
Conformally Einstein Lorentzian Lie groups.- Causal ladder of Finsler
spacetimes with a cone Killing vector field.- A geometric reduction method
for some fully nonlinear first order PDEs on semi-Riemannian manifolds.- Mean
curvature, singularities and time functions in cosmology.- C0-inextendibility
of FLRW spacetimes within a subclass of axisymmetric spacetimes.- Spacelike
causal boundary at  nite distance and continuous extension of the metric:
second preliminary report.- From Lorentzian manifolds to signature-type
change with singular transverse metrics.- Constant angle surfaces in I x f
R2,1 with a null principal direction.- Vacuum cosmological spacetimes without
CMC Cauchy surfaces.- On pseudo-parallel surfaces.- Introduction to Kundt
spaces.- Topologies on the future causal completion.- On the application of
Lorentz-Finsler geometry to model wave propagation.- The ladder of
Finsler-type objects and their variational problems on spacetimes.- Compact
plane waves with parallel Weyl curvature.- Author Index.