Muutke küpsiste eelistusi

Proteins at Solid-Liquid Interfaces 2006 ed. [Kõva köide]

  • Formaat: Hardback, 330 pages, kõrgus x laius: 235x155 mm, kaal: 688 g, 162 Illustrations, black and white; XVI, 330 p. 162 illus., 1 Hardback
  • Sari: Principles and Practice
  • Ilmumisaeg: 23-Aug-2006
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 354032657X
  • ISBN-13: 9783540326571
Teised raamatud teemal:
  • Kõva köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 330 pages, kõrgus x laius: 235x155 mm, kaal: 688 g, 162 Illustrations, black and white; XVI, 330 p. 162 illus., 1 Hardback
  • Sari: Principles and Practice
  • Ilmumisaeg: 23-Aug-2006
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 354032657X
  • ISBN-13: 9783540326571
Teised raamatud teemal:
The adsorption of proteins at interfaces plays a role in many ?elds, such as health, food, environment and analysis. Fundamental aspects are useful when considering applications. We focus here especially on solid-liquid interfaces and present a few fundamental studies regarding adsorption - netics and conformational changes, and examples of applications to sensors and membranes. The ?rst part is dedicated to fundamental studies performed using - tical waveguide lightmode spectroscopy, as an example of a technique that has the advantage of not requiring labelled proteins, but is limited to s- ci c supports. Conversely, the radiolabelling of proteins, which has the disadvantage of any labelling process, allows application to any kind of s- faces. As proteins bear both positive and negative charges, we can expect thein uenceofanelectric eldnormaltothe interfaceonthe pack- ing order at interfaces. The re ning of data treatment may also lead to the determination of useful structural parameters. The balance between protein-surface and protein-protein interactions is a key point for the - scription of the structure at high coverage of the surface. Electrokinetic methods, like measurement of the streaming potential, may be helpful in the electrical characterisation of the interfacial layer facing the solution. The second part includes different bench techniques that were dev- oped to improve the sensitivity of the characterisation of the orientation and structure of the proteins at interfaces: dual polarisation interferometry and total internal re ection ellipsometry are such recent examples.
Part I Analysis of the Adsorption Kinetics
1 Protein Adsorption Kinetics: Influence of Substrate Electric Potential
1(22)
Paul R. Van Tassel
1.1 Introduction
1(1)
1.2 Theoretical Prediction
2(4)
1.3 Experimental Measure
6(3)
1.3.1 OWLS Principles
6(2)
1.3.2 OWLS Experiments
8(1)
1.4 Results
9(8)
1.5 Discussion
17(4)
1.5.1 Surface-Bound Counterions
19(1)
1.5.2 Local pH Effects
20(1)
1.5.3 Solvent Interfacial Structure
20(1)
1.5.4 Protein Charge Heterogeneity
20(1)
1.6 Conclusions
21(1)
References
21(2)
2 From Kinetics to Structure: High Resolution Molecular Microscopy
23(28)
Jeremy J. Ramsden
2.1 Introduction
23(2)
2.2 Optical Waveguide Lightmode Spectroscopy
25(9)
2.2.1 Principles of Optical Biosensing
27(1)
2.2.2 Mode Equations for OWLS
28(2)
2.2.3 The Uniform Thin Film Approximation (UTFA)
30(1)
2.2.4 Optical Invariants
31(3)
2.3 The Practical Determination of Waveguide Parameters
34(3)
2.3.1 Device Fabrication
35(1)
2.3.2 Fluid Handling Arrangements
36(1)
2.4 Static Structure
37(1)
2.5 Kinetic Analysis and Dynamic Structural Inference
37(6)
2.5.1 Particle Transport
37(3)
2.5.2 The Chemical Adsorption Coefficient
40(1)
2.5.3 The Analysis of The Available Area Function
41(2)
2.6 Behaviour of Real Proteins
43(4)
2.6.1 Evaluation of Lateral Diffusivity and 2D Crystal Unit Cell Size
44(1)
2.6.2 Desorption
45(1)
2.6.3 Multilayers
46(1)
2.7 Conclusions
47(1)
References
48(3)
3 Initial Adsorption Kinetics in a Rectangular Thin Channel, and Coverage-Dependent Structural Transition Observed by Streaming Potential
51(24)
Philippe Dejardin, Elena N. Vasina
3.1 Introduction
51(5)
3.2 The Initial Adsorption Constant and its Limit Expressions
56(7)
3.2.1 The Local Initial Adsorption Constant k(x), its Limit Expressions and Approximation
56(3)
3.2.2 The Mean Adsorption Constant, its Limit Expressions and Approximation
59(2)
3.2.3 Experimental Results and Discussion
61(2)
3.3 The Structural Transition with Increasing Interfacial Concentration
63(4)
3.3.1 Observation by Streaming Potential
64(2)
3.3.2 Different Models
66(1)
3.4 Conclusion
67(1)
Appendix
68(1)
References
69(6)
Part II Analysis of the Structure at the Interface
4 Dual Polarisation Interferometry: An Optical Technique to Measure the Orientation and Structure of Proteins at the Solid-Liquid Interface in Real Time
75(30)
Neville Freeman
4.1 Introduction
75(4)
4.2 Experimental Approaches Adopted
79(1)
4.2.1 Typical Approach Adopted
79(1)
4.2.2 Experimental Protocols
79(1)
4.2.3 Advantages
79(1)
4.2.4 Verifying DPI as an Experimental Approach
80(1)
4.3 DPI: Applications
80(11)
4.3.1 Introduction
80(1)
4.3.2 Protein Orientation
81(1)
4.3.3 Bovine Serum Albumin Structures at pH 3 and pH 7
82(1)
4.3.4 Protein Orientation and Subsequent Activity
83(4)
4.3.5 Protein Structure and Small Molecule Interactions
87(3)
4.3.6 Protein Structure and Metal Ion Interactions
90(1)
4.4 Future Developments
91(2)
4.5 Conclusions
93(1)
Appendix 1 DPI: Background
93(2)
A.1.1 Neutron Reflection
93(1)
A.1.2 Surface Plasmon Resonance
94(1)
Appendix 2 DPI: Theory
95(4)
Appendix 3 DPI: Implementation
99(3)
A.3.1 Hardware
99(2)
A.3.2 Data Analysis
101(1)
References
102(3)
5 Total Internal Reflection Ellipsometry: Monitoring of Proteins on Thin Metal Films
105(14)
Michal Poksinski, Hans Arwin
5.1 Introduction
105(1)
5.2 Total Internal Reflection Ellipsometry
106(4)
5.3 Experimental Setup
110(3)
5.4 Application Examples
113(4)
5.5 Further Possibilities
117(1)
References
118(1)
6 Conformations of Proteins Adsorbed at Liquid-Solid Interfaces
119(32)
Sylvie Noinville, Madeleine Revault
6.1 Introduction
119(6)
6.2 Experimental Techniques
125(5)
6.2.1 High-Resolution Structure of Proteins
125(1)
6.2.2 Secondary Structure of Proteins
126(1)
6.2.3 Orientation, Localised Structural Information
127(1)
6.2.4 Spatial Distribution of Proteins in the Adsorbed Layer
128(1)
6.2.5 Solvation Information
129(1)
6.3 Surface Effects on Both Protein Structure and Solvation by the ATR-FTIR Technique
130(12)
6.3.1 FTIR Spectral Analysis
130(2)
6.3.2 Proteins in Solution
132(2)
6.3.3 Surface-Induced Conformational Changes of a Soft Protein: BSA
134(4)
6.3.4 Surface-Induced Conformational Changes of a Hard Protein: Lysozyme
138(3)
6.3.5 Folding or unfolding of proteins on hydrophobic supports
141(1)
6.4 Conclusion
142(1)
References
142(9)
7 Evaluation of Proteins on Bio-Devices
151(24)
Satoka Aoyagi, Masahiro Kudo
7.1 Introduction
151(2)
7.2 Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)
153(8)
7.2.1 Principles of TOF-SIMS
153(3)
7.2.2 TOF-SIMS Spectra and Secondary-Ion Images
156(1)
7.2.3 Data Analysis
157(4)
7.3 Analysis of Proteins on Bio-Devices
161(8)
7.3.1 Characterization of Proteins on Substrates
161(3)
7.3.2 Investigation of Conformation and Orientation of Proteins on Substrates
164(1)
7.3.3 Imaging of Protein Distribution
165(3)
7.3.4 Other Points and Future Directions
168(1)
7.4 Summary
169(1)
References
169(6)
Part III Some Applications
8 Fibronectin at Polymer Surfaces with Graduated Characteristics
175(24)
Tilo Pompe, Lars Renner, Carsten Werner
8.1 Introduction
175(2)
8.2 Gradated Substrate Physicochemistry
177(4)
8.3 Fibronectin Exchange at a Constant Surface Concentration
181(7)
8.4 Fibronectin Exchange at Variable Surface Concentrations
188(7)
8.5 Relevance of the Interfacial Constraints of Fibronectin for Cell-Matrix Adhesion
195(2)
References
197(2)
9 Development of Chemical Microreactors by Enzyme Immobilization onto Textiles
199(46)
Christophe Innocent, Patrick Seta
9.1 Introduction
199(2)
9.2 Nonconducting Cellulosic Textiles
201(26)
9.2.1 Pepsin and Trypsin Immobilization on Cotton
201(10)
9.2.2 Immobilization of Uricase and Xanthine Oxidase on Ion-Exchanging Textiles
211(12)
9.2.3 Urease Electro dialysis Coupling
223(4)
9.3 Electron-Conducting Textile
227(15)
9.3.1 Enzyme Immobilization on Carbon Felt
227(11)
9.3.2 Electrocatalysis Coupling with Enzyme-Conducting Textile Catalytic Reactivity
238(4)
References
242(3)
10 Approaches to Protein Resistance on the Polyacrylonitrile-based Membrane Surface: an Overview
245(1)
Ling-Shu Wan, Zhi-Kang Xu, Xiao-Jun Huang
10.1 Introduction
245(1)
10.2 Copolymerization Procedures
246(6)
10.3 Poly(ethylene glycol) Tethering
252(5)
10.4 Physical Adsorption
257(2)
10.5 Biomacromolecule Immobilization
259(4)
10.6 Biomimetic Modification
263(3)
10.7 Conclusion
266(2)
References
268(3)
11 Modulation of the Adsorption and Activity of Protein/Enzyme on the Polypropylene Microporous Membrane Surface by Surface Modification
271(1)
Qian Yang, Zhi-Kang Xu, Zheng-Wei Dai
11.1 Surface Modifications for Reducing Nonspecific Protein Adsorption
271(15)
11.1.1 Plasma treatment
273(3)
11.1.2 Ultraviolet (UV) modification
276(6)
11.1.3 γ-Ray-induced modification
282(3)
11.1.4 Ozone Method
285(1)
11.2 Surface-Modified PPMMs for Enzyme Immobilization
286(9)
11.2.1 Physical Adsorption/Entrapment
287(2)
11.2.2 Covalent Binding
289(5)
11.2.3 Site-Specific Immobilization
294(1)
11.3 Conclusions
295(1)
References
295(4)
12 Nonbiofouling Surfaces Generated from Phosphorylcholine-Bearing Polymers
299(1)
Yasuhiko Iwasaki, Nobuo Nakabayashi, Kazuhiko Ishihara
12.1 Introduction
299(1)
12.2 Forces Involved in Protein Adsorption
300(2)
12.3 Design of Phosphorylcholine-Bearing Surfaces
302(1)
12.4 Mechanism of Resistance to Protein Adsorption on the MPC Polymer Surface
303(7)
12.5 Fundamental Interactions Between MPC Polymers and Proteins
310(2)
12.6 Recent Designs of Nonfouling Phosphorylcholine Surfaces with Well-Defined Structures
312(2)
12.7 Control of Cell-Material Interactions on a Phosphorylcholine Polymer Nonfouling Surface
314(7)
12.7.1 Cell Manipulation on a Well-Defined Phosphorylcholine Polymer Brush
315(3)
12.7.2 Selective Cell Attachment to a Biomimetic Polymer Surface Through the Recognition of Cell-Surface Tags
318(3)
12.8 Conclusion
321(1)
References
321(6)
Subject Index 327